Slim Kallel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747719/publications.pdf

Version: 2024-02-01

1039406 996533 59 453 9 15 citations h-index g-index papers 62 62 62 288 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	NovidChain: Blockchainâ€based privacyâ€preserving platform for COVIDâ€19 test/vaccine certificates. Software - Practice and Experience, 2022, 52, 841-867.	2.5	47
2	Model-Driven Simulation of Elastic OCCI Cloud Resources. Computer Journal, 2022, 65, 1144-1166.	1.5	2
3	Optimal business process deployment cost in cloud resources. Journal of Supercomputing, 2021, 77, 1579-1611.	2.4	8
4	Restrictionâ€based fragmentation of business processes over the cloud. Concurrency Computation Practice and Experience, 2021, 33, 1-1.	1.4	2
5	From generating process views over inter-organizational business processes to achieving their temporal consistency. Computing (Vienna/New York), 2021, 103, 1305-1331.	3.2	1
6	A comprehensive survey on modeling of cyberâ€physical systems. Concurrency Computation Practice and Experience, 2020, 32, e4850.	1.4	29
7	Toward a correct and optimal time-aware cloudÂresource allocation to business processes. Future Generation Computer Systems, 2020, 112, 751-766.	4.9	13
8	How blockchain helps to combat trust crisis in COVID-19 pandemic?., 2020,,.		4
9	Business process specification, verification, and deployment in a mono-cloud, multi-edge context. Computer Science and Information Systems, 2020, 17, 293-313.	0.7	2
10	Modelling and verifying timeâ€aware processes for cyberâ€physical environments. IET Software, 2019, 13, 36-48.	1.5	10
11	Towards the verification of cyber-physical processes based on time and physical properties. International Journal of Business and Systems Research, 2019, 13, 47.	0.2	1
12	Optimizing the Performance of Timed-Constrained Business Processes in Cloud-Fog Environment. Communications in Computer and Information Science, 2019, , 78-90.	0.4	3
13	A Model-based Approach for the Modeling and the Verification of Railway Signaling System. , 2019, , .		4
14	Software agents meet internet of things. Internet Technology Letters, 2018, 1, e17.	1.4	2
15	Scheduling Business Process Activities for Time-Aware Cloud Resource Allocation. Lecture Notes in Computer Science, 2018, , 445-462.	1.0	1
16	Formal Specification and Verification of Cloud Resource Allocation Using Timed Petri-Nets. Communications in Computer and Information Science, 2018, , 40-49.	0.4	1
17	Verification of the Consistency of Time-Aware Cyber-Physical Processes. Lecture Notes in Computer Science, 2018, , 67-79.	1.0	1
18	Specification and automatic checking of architecture constraints on object oriented programs. Information and Software Technology, 2018, 101, 16-31.	3.0	5

#	Article	IF	CITATIONS
19	Formal Verification of Temporal Constraints and Allocated Cloud Resources in Business Processes. , 2018, , .		3
20	Optimal Cost for Time-Aware Cloud Resource Allocation in Business Process. , 2017, , .		13
21	Demonstrating BPMN4CPS: Modeling anc verification of cyber-physical systems. , 2017, , .		2
22	Modeling and verification of temporal properties in cyber-physical systems. , 2017, , .		3
23	An approach based on runtime models for developing dynamically adaptive systems. Future Generation Computer Systems, 2017, 68, 365-375.	4.9	13
24	AROSA 2017: Summary Report., 2017, , .		0
25	Time patterns for cyber-physical systems. , 2016, , .		3
26	Arosa Track Report. , 2016, , .		0
27	BPMN4CPS: A BPMN Extension for Modeling Cyber-Physical Systems. , 2016, , .		39
28	Formal Verification of Time-Aware Cloud Resource Allocation in Business Process. Lecture Notes in Computer Science, 2016, , 400-417.	1.0	10
29	AROSA 2015 Track Report: Adaptive and Reconfigurable Service-Oriented and Component-Based Applications and Architectures. , 2015, , .		1
30	The temporal perspective in business process modeling: a survey and research challenges. Service Oriented Computing and Applications, 2015, 9, 75-85.	1.3	47
31	Enabling Technologies: Infrastructure for Collaborative Enterprises. Computer Journal, 2015, 58, 355-355.	1.5	2
32	A Collaborative Process for Developing Secure Component Based Applications. , 2014, , .		0
33	On Enabling Time-Aware Consistency of Collaborative Cross-Organisational Business Processes. Lecture Notes in Computer Science, 2014, , 351-358.	1.0	3
34	Track Report of Adaptive and Reconfigurable Service-Oriented and Component-Based Applications and Architectures (AROSA 2014). , 2014, , .		2
35	Toward a Verification of Time-Centric Business Process Models. , 2014, , .		6
36	Middleware for Dynamically Adaptive Systems. Lecture Notes in Computer Science, 2014, , 72-84.	1.0	1

#	Article	IF	Citations
37	Enhancing Formal Specification and Verification of Temporal Constraints in Business Processes. , 2014, , .		23
38	Monitoring of Quality of Service in Dynamically Adaptive Systems. Lecture Notes in Computer Science, 2014, , 121-130.	1.0	O
39	An Approach for Security Patterns Application in Component Based Models. Lecture Notes in Computer Science, 2014, , 283-296.	1.0	4
40	MDA-Based Approach for Implementing Secure Mobile Agent Systems. Lecture Notes in Computer Science, 2013, , 56-72.	1.0	0
41	Verifying Runtime Architectural Reconfiguration of Dynamically Adaptive Systems., 2013,,.		3
42	An Aspect-Oriented Approach to Enforce Security Properties in Business Processes. Lecture Notes in Computer Science, 2013, , 344-355.	1.0	3
43	AROSA Track Report., 2013,,.		0
44	An Engineering Process for Security Patterns Application in Component Based Models., 2013,,.		6
45	AO4AADL: Aspect oriented extension for AADL. Open Computer Science, 2013, 3, 43-68.	1.3	9
46	Toward a Time-centric modeling of Business Processes in BPMN 2.0., 2013, , .		32
47	Time-Aware Automatic Process View Generation. , 2013, , .		3
48	Runtime Adaptation of Component Based Systems. Lecture Notes in Computer Science, 2013, , 284-288.	1.0	3
49	Managing Architectural Reconfiguration at Runtime. International Journal of Web Portals, 2013, 5, 55-72.	1.1	5
50	AROSA Track Report: Adaptive and Reconfigurable Service-Oriented and Component-Based Applications and Architectures. , 2012, , .		2
51	Modeling Secure Mobile Agent Systems. Lecture Notes in Computer Science, 2012, , 330-339.	1.0	4
52	Modeling and enforcing invariants of dynamic software architectures. Software and Systems Modeling, 2012, 11, 127-149.	2.2	6
53	Toward an Aspect Oriented ADL for Embedded Systems. Lecture Notes in Computer Science, 2010, , 489-492.	1.0	7
54	Specifying and Monitoring Temporal Properties in Web Services Compositions. , 2009, , .		32

SLIM KALLEL

#	Article	IF	CITATIONS
55	A holistic approach for access control policies: from formal specification to aspect-based enforcement. International Journal of Information and Computer Security, 2009, 3, 337.	0.2	4
56	From Formal Access Control Policies to Runtime Enforcement Aspects. Lecture Notes in Computer Science, 2009, , 16-31.	1.0	10
57	Using Aspects for Enforcing Formal Architectural Invariants. Electronic Notes in Theoretical Computer Science, 2008, 215, 5-21.	0.9	2
58	Aspect-based enforcement of formal delegation policies. , 2008, , .		3
59	Combining Formal Methods and Aspects for Specifying and Enforcing Architectural Invariants. , 2007, , 211-230.		7