
Tuo Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3747615/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nature Nanotechnology, 2022, 17, 777-787.	31.5	80
2	Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nature Materials, 2021, 20, 701-710.	27.5	281
3	Allâ€Inâ€One Dendrimerâ€Based Lipid Nanoparticles Enable Precise HDRâ€Mediated Gene Editing In Vivo. Advanced Materials, 2021, 33, e2006619.	21.0	52
4	Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer. Exploration, 2021, 1, 21-34.	11.0	64
5	Hydrophobic Optimization of Functional Poly(TPAE-co-suberoyl chloride) for Extrahepatic mRNA Delivery following Intravenous Administration. Pharmaceutics, 2021, 13, 1914.	4.5	7
6	Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for <i>In Vivo</i> CRISPR/Cas-Based Genome Editing. ACS Nano, 2020, 14, 9243-9262.	14.6	69
7	Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nature Communications, 2020, 11, 3232.	12.8	328
8	Theranostic dendrimer-based lipid nanoparticles containing PEGylated BODIPY dyes for tumor imaging and systemic mRNA delivery in vivo. Journal of Controlled Release, 2020, 325, 198-205.	9.9	59
9	Lipidâ€Modified Aminoglycosides for mRNA Delivery to the Liver. Advanced Healthcare Materials, 2020, 9, e1901487.	7.6	25
10	Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nature Nanotechnology, 2020, 15, 313-320.	31.5	932
11	Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nature Communications, 2019, 10, 2566.	12.8	47
12	Hollow Silica Nanoparticles Penetrate the Peripheral Nerve and Enhance the Nerve Blockade from Tetrodotoxin. Nano Letters, 2018, 18, 32-37.	9.1	29
13	Dendrimerâ€Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. Advanced Materials, 2018, 30, e1805308.	21.0	136
14	Getting Drugs Across Biological Barriers. Advanced Materials, 2017, 29, 1606596.	21.0	149
15	Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species. ACS Applied Materials & Interfaces, 2017, 9, 41737-41747.	8.0	15
16	Balancing Biocompatibility, Internalization and Pharmacokinetics of Polycations/siRNA by Structuring the Weak Negative Charged Ternary Complexes with Hyaluronic Acid. Journal of Biomedical Nanotechnology, 2017, 13, 1533-1544.	1.1	4
17	Zinc Oxide Nanoparticles as Adjuvant To Facilitate Doxorubicin Intracellular Accumulation and Visualize pH-Responsive Release for Overcoming Drug Resistance. Molecular Pharmaceutics, 2016, 13, 1723-1730.	4.6	61
18	A self-assembled DNA nanostructure for targeted and pH-triggered drug delivery to combat doxorubicin resistance. Journal of Materials Chemistry B, 2016, 4, 3854-3858.	5.8	14

Tuo Wei

#	Article	IF	CITATIONS
19	Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials, 2016, 91, 44-56.	11.4	186
20	Quercetin-loaded nanomicelles to circumvent human castration-resistant prostate cancer in vitro and in vivo. Nanoscale, 2016, 8, 5126-5138.	5.6	63
21	The Promising Nanocarrier for Doxorubicin and siRNA Co-delivery by PDMAEMA-based Amphiphilic Nanomicelles. ACS Applied Materials & Interfaces, 2016, 8, 4347-4356.	8.0	76
22	Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice. Nature Nanotechnology, 2016, 11, 613-620.	31.5	51
23	Multifunctional metal rattle-type nanocarriers for MRI-guided photothermal cancer therapy. Proceedings of SPIE, 2015, , .	0.8	0
24	Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomaterials, 2015, 48, 45-55.	11.4	63
25	Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2978-2983.	7.1	318
26	Multifunctional Metal Rattle-Type Nanocarriers for MRI-Guided Photothermal Cancer Therapy. Molecular Pharmaceutics, 2014, 11, 3386-3394.	4.6	32
27	The effect of guanidinylation of PEGylated poly(2-aminoethyl methacrylate) on the systemic delivery of siRNA. Biomaterials, 2013, 34, 3120-3131.	11.4	46
28	Gene transfection efficacy and biocompatibility of polycation/DNA complexes coated with enzyme degradable PEGylated hyaluronic acid. Biomaterials, 2013, 34, 6495-6503.	11.4	72
29	Functionalized Nanoscale Micelles Improve Drug Delivery for Cancer Therapy in Vitro and in Vivo. Nano Letters, 2013, 13, 2528-2534.	9.1	178
30	Superior Penetration and Retention Behavior of 50 nm Gold Nanoparticles in Tumors. Cancer Research, 2013, 73, 319-330.	0.9	281
31	CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chemical Communications, 2012, 48, 4869.	4.1	62
32	Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors <i>in Vivo</i> . ACS Nano, 2012, 6, 4483-4493.	14.6	724
33	Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials, 2012, 33, 1180-1189.	11.4	280
34	Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier. Biomaterials, 2011, 32, 879-889.	11.4	97
35	Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials, 2011, 32, 4283-4292.	11.4	79