Hui Xu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3747440/hui-xu-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10,978 190 100 53 h-index g-index citations papers 6.58 196 8.7 13,198 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
190	A bubble-assisted strategy to prepare porous ultrathin carbon nitride for highly-active photocatalytic hydrogen production. <i>Journal of Alloys and Compounds</i> , 2022 , 904, 163788	5.7	2
189	Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic CO2 reduction. <i>Applied Surface Science</i> , 2022 , 578, 151848	6.7	3
188	Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. <i>Chemical Engineering Journal</i> , 2022 , 429, 1322	04.7	16
187	Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. <i>Journal of Colloid and Interface Science</i> , 2022 , 606, 793-799	9.3	8
186	Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1286-1294	11.3	O
185	Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine <i>Biosensors and Bioelectronics</i> , 2022 , 206, 114144	11.8	5
184	Modulating electronic structure of ternary NiMoV LDH nanosheet array induced by doping engineering to promote urea oxidation reaction. <i>Chemical Engineering Journal</i> , 2021 , 430, 133100	14.7	9
183	Ultrathin structure of oxygen doped carbon nitride for efficient CO2 photocatalytic reduction. <i>Nanotechnology</i> , 2021 ,	3.4	1
182	Self-assembly and boosted photodegradation properties of perylene diimide via different solvents. <i>New Journal of Chemistry</i> , 2021 , 45, 21701-21707	3.6	1
181	Crystal phase engineering boosted photo-electrochemical kinetics of CoSe for oxygen evolution catalysis <i>Journal of Colloid and Interface Science</i> , 2021 , 611, 22-28	9.3	3
180	Synergistic effect of isolated Co and Fe dual active sites boosting the photocatalytic hydrogen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2021 , 162290	5.7	2
179	Nanostructure and functional group engineering of black phosphorus via plasma treatment for CO2 photoreduction. <i>Journal of CO2 Utilization</i> , 2021 , 54, 101745	7.6	2
178	Boosting CO2 Capture and Its Photochemical Conversion on Bismuth Surface. <i>Physica Status Solidi</i> (A) Applications and Materials Science, 2021 , 218, 2000671	1.6	O
177	Metallic rhombohedral NbS2/2D g-C3N4 composite with enhanced photogenerated carriers separation and photocatalytic performance. <i>Applied Surface Science</i> , 2021 , 542, 148619	6.7	8
176	Construction of dual ion (Fe3+/Fe2+ and Nb5+/Nb4+) synergy and full spectrum 1D nanorod Fe2O3/NaNbO3 photo-Fenton catalyst for the degradation of antibiotic: Effects of H2O2, S2O82 and toxicity. Separation and Purification Technology, 2021, 261, 118269	8.3	10
175	Surface Engineering of 2D Carbon Nitride with Cobalt Sulfide Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2100012	1.6	2
174	Minireview on the Commonly Applied Copper-Based Electrocatalysts for Electrochemical CO2 Reduction. <i>Energy & Energy & E</i>	4.1	5

(2020-2021)

173	Highly sensitive electrochemical immunosensor for the simultaneous detection of multiple tumor markers for signal amplification. <i>Talanta</i> , 2021 , 226, 122133	6.2	7	
172	Ultrafast electron extraction by 2D carbon nitride modified with CoS cocatalyst for efficient photocatalytic performance. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 617, 126151	5.1	4	
171	Accelerating photocatalytic hydrogen evolution of Ta2O5/g-C3N4 via nanostructure engineering and surface assembly. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 20516-20523	6.7	3	
170	Grain-boundary surface terminations incorporating oxygen vacancies for selectively boosting CO2 photoreduction activity. <i>Nano Energy</i> , 2021 , 84, 105869	17.1	19	
169	Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. <i>Green Energy and Environment</i> , 2021 , 6, 538-545	5.7	11	
168	Synthesis of carbon nitride in moist environments: A defect engineering strategy toward superior photocatalytic hydrogen evolution reaction. <i>Journal of Energy Chemistry</i> , 2021 , 54, 403-413	12	12	
167	Sulfur promoted n-🖰 electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity. <i>Chinese Journal of Catalysis</i> , 2021 , 42, 450-459	11.3	28	
166	Large-scale production of ultrathin carbon nitride-based photocatalysts for high-yield hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119475	21.8	37	
165	Construction 3D rod-like Bi3.64Mo0.36O6.55/CuBi2O4 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Cu2+/Cu+ redox cycle. <i>Separation and Purification Technology</i> , 2021 , 254, 117546	8.3	7	
164	Realizing the synergistic effect of electronic modulation over graphitic carbon nitride for highly efficient photodegradation of bisphenol A and 2-mercaptobenzothiazole: Mechanism, degradation pathway and density functional theory calculation. <i>Journal of Colloid and Interface Science</i> , 2021 ,	9.3	9	
163	Recent advance in single-atom catalysis. <i>Rare Metals</i> , 2021 , 40, 767-789	5.5	40	
162	Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion. <i>New Journal of Chemistry</i> , 2021 , 45, 1993-2000	3.6	3	
161	Constructing Ni3C/2D g-C3N4 Photocatalyst and the Internal Catalytic Mechanism Study. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2021 , 218, 2100171	1.6		
160	Unique Dual-Sites Boosting Overall CO Photoconversion by Hierarchical Electron Harvesters. <i>Small</i> , 2021 , 17, e2103796	11	17	
159	Accelerated Photoreduction of CO to CO over a Stable Heterostructure with a Seamless Interface. <i>ACS Applied Materials & Districted Mater</i>	9.5	12	
158	Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts. <i>Chemical Engineering Journal</i> , 2021 , 422, 129888	14.7	31	
157	Fe atom clusters embedded N-doped graphene decorated with ultrathin mesoporous carbon nitride nanosheets for high efficient photocatalytic performance. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 629, 127360	5.1	2	
156	Solar driven high efficiency hydrogen evolution catalyzed by surface engineered ultrathin carbon nitride. <i>New Journal of Chemistry</i> , 2020 , 44, 19314-19322	3.6	О	

155	Bowl-shaped graphene oxide/Fe3O4 composites on Au-PCB electrode for electrochemical detection of dopamine. <i>Ionics</i> , 2020 , 26, 4171-4181	2.7	5
154	Direct Z-scheme red carbon nitride/rod-like lanthanum vanadate composites with enhanced photodegradation of antibiotic contaminants. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119245	21.8	39
153	In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. <i>Applied Catalysis B: Environmental</i> , 2020 , 269, 118760	21.8	76
152	Cryo-induced closely bonded heterostructure for effective CO2 conversion: The case of ultrathin BP nanosheets/g-C3N4. <i>Journal of Energy Chemistry</i> , 2020 , 49, 89-95	12	30
151	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH)2 Characteristic. <i>Solar Rrl</i> , 2020 , 4, 1900538	7.1	17
150	Tandem Electrodes for Carbon Dioxide Reduction into C2+ Products at Simultaneously High Production Efficiency and Rate. <i>Cell Reports Physical Science</i> , 2020 , 1, 100051	6.1	26
149	Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide. <i>Chemical Engineering Journal</i> , 2020 , 396, 125244	14.7	23
148	Direct Z-scheme photocatalyst for efficient water pollutant degradation: A case study of 2D g-C3N4/BiVO4. <i>Materials Chemistry and Physics</i> , 2020 , 241, 122308	4.4	20
147	Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities. <i>Applied Surface Science</i> , 2020 , 507, 145145	6.7	11
146	Hierarchical Z-scheme g-C3N4/Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. <i>Environmental Science: Nano</i> , 2020 , 7, 676-687	7.1	50
145	Efficient photocatalytic hydrogen evolution by engineering amino groups into ultrathin 2D graphitic carbon nitride. <i>Applied Surface Science</i> , 2020 , 507, 145085	6.7	9
144	An all-organic TPA-3CN/2D-C3N4 heterostructure for high efficiency photocatalytic hydrogen evolution. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 589, 124397	5.1	5
143	Synthesis of Photothermally Stable Triangular Silver Nanoplates for SERS Applications, Photokilling of Bacteria. <i>ChemNanoMat</i> , 2020 , 6, 148-153	3.5	4
142	Preparation of a novel sandwich-type electrochemical immunosensor for AFP detection based on an ATRP and click chemistry technique. <i>Polymer Chemistry</i> , 2020 , 11, 900-908	4.9	12
141	Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. <i>Inorganic Chemistry Frontiers</i> , 2020 , 7, 597-602	6.8	38
140	Nitriding Nickel-Based Cocatalyst: A Strategy To Maneuver Hydrogen Evolution Capacity for Enhanced Photocatalysis. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 884-892	8.3	20
139	Sustainable supercapacitors of nitrogen-doping porous carbon based on cellulose nanocrystals and urea. <i>International Journal of Biological Macromolecules</i> , 2020 , 164, 4095-4103	7.9	9
138	Plasma-induced defect engineering: Boosted the reverse water gas shift reaction performance with electron trap. <i>Journal of Colloid and Interface Science</i> , 2020 , 580, 814-821	9.3	14

137	An All-Organic D-A System for Visible-Light-Driven Overall Water Splitting. Small, 2020, 16, e2003914	11	41
136	Nitrogen-Doped Carbon Quantum Dots from Poly(ethyleneimine) for Optical Dual-Mode Determination of Cu and l-Cysteine and Their Logic Gate Operation. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 47245-47255	9.5	22
135	Metal Nanoparticles Confined within an Inorganic-Organic Framework Enable Superior Substrate-Selective Catalysis. <i>ACS Applied Materials & Distrate-Selective Catalysis</i> . <i>ACS Applied Materials & Distrate-Selective Catalysis</i> .	9.5	8
134	Emerging surface strategies on graphitic carbon nitride for solar driven water splitting. <i>Chemical Engineering Journal</i> , 2020 , 382, 122812	14.7	97
133	Short-time Thermal Oxidation of Ultrathin and Broadband Carbon Nitride for Efficient Photocatalytic H2 Generation. <i>ChemCatChem</i> , 2020 , 12, 1169-1176	5.2	2
132	Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation. <i>Journal of Colloid and Interface Science</i> , 2020 , 560, 555-564	9.3	21
131	Enhanced photocatalytic H2 evolution by deposition of metal nanoparticles into mesoporous structure of g-C3N4. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 585, 12406	7 ^{5.1}	13
130	Spatially confined Fe2O3 in hierarchical SiO2@TiO2 hollow sphere exhibiting superior photocatalytic efficiency for degrading antibiotics. <i>Chemical Engineering Journal</i> , 2020 , 380, 122583	14.7	78
129	Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122659	12.8	11
128	Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019 , 556, 324-334	9.3	10
127	Graphene quantum dots modified flower like BiWO for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2019 , 557, 498-505	9.3	40
126	Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H Evolution. <i>ACS Nano</i> , 2019 , 13, 11294-11302	16.7	66
125	Engineering black phosphorus to porous g-C3N4-metalBrganic framework membrane: a platform for highly boosting photocatalytic performance. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 4408-4414	13	51
124	Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5209-5213	13	60
123	Cryo-mediated liquid-phase exfoliated 2D BP coupled with 2D C3N4 to photodegradate organic pollutants and simultaneously generate hydrogen. <i>Applied Surface Science</i> , 2019 , 490, 117-123	6.7	13
122	2-Aminopurine modified DNA probe for rapid and sensitive detection of l-cysteine. <i>Talanta</i> , 2019 , 202, 520-525	6.2	4
121	Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction. <i>Applied Catalysis B: Environmental</i> , 2019 , 256, 117854	21.8	152
120	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 14291-14301	13	21

119	One-step oxygen vacancy engineering of WO3-x/2D g-C3N4 heterostructure: Triple effects for sustaining photoactivity. <i>Journal of Alloys and Compounds</i> , 2019 , 795, 426-435	5.7	24
118	Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. <i>Chemical Engineering Journal</i> , 2019 , 370, 944-951	14.7	42
117	The construction of a Fenton system to achieve in situ H2O2 generation and decomposition for enhanced photocatalytic performance. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1490-1500	6.8	15
116	Fabrication of magnetic BaFe12O19/Ag3PO4 composites with an in situ photo-Fenton-like reaction for enhancing reactive oxygen species under visible light irradiation. <i>Catalysis Science and Technology</i> , 2019 , 9, 2563-2570	5.5	19
115	Accelerating Photogenerated Charge Kinetics via the Synergetic Utilization of 2D Semiconducting Structural Advantages and Noble-Metal-Free Schottky Junction Effect. <i>Small</i> , 2019 , 15, e1804613	11	32
114	Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)-Codoped and exfoliated ultrathin g-C3N4 nanosheets. <i>Applied Catalysis B: Environmental</i> , 2019 , 248, 84-94	21.8	203
113	Constructing Schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution. <i>Applied Surface Science</i> , 2019 , 495, 143528	6.7	21
112	Preparation of oxygen-deficient 2D WO3N nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling. <i>Journal of Materials Science</i> , 2019 , 54, 12463-12475	4.3	14
111	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS2 atomic layer nanosheet modified mesoporous graphitic carbon nitride. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18	90 ⁶ -18	974
110	Improved chiral electrochemical recognition of tryptophan enantiomers based on three-dimensional molecularly imprinted overoxidized polypyrrole/MnO /carbon felt composites. <i>Chirality</i> , 2019 , 31, 917-922	2.1	4
109	Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review 2019 , 1, 253-275		87
108	2020 Roadmap on two-dimensional nanomaterials for environmental catalysis. <i>Chinese Chemical Letters</i> , 2019 , 30, 2065-2088	8.1	72
107	Preparation of Co-Mo-O ultrathin nanosheets with outstanding catalytic performance in aerobic oxidative desulfurization. <i>Chemical Communications</i> , 2019 , 55, 13995-13998	5.8	22
106	Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. <i>Applied Catalysis B: Environmental</i> , 2019 , 241, 452-460	21.8	179
105	Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation. <i>Chemical Engineering Journal</i> , 2019 , 357, 487-497	14.7	113
104	Electrochemical Chiral Recognition of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol-Gel Silica. <i>ACS Applied Materials & Description of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol-Gel Silica. ACS Applied Materials & Description of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol-Gel Silica. <i>ACS Applied Materials & Description of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol-Gel Silica. ACS Applied Materials & Description of Tryptophan Isomers Based on Nonionic Surfactant-Assisted Molecular Imprinting Sol-Gel Silica. <i>ACS Applied Materials & Description Sol-Gel Silica (Control Materials & Description</i></i></i>	9.5	29
103	Integration of metallic TaS2 Co-catalyst on carbon nitride photoharvester for enhanced photocatalytic performance. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 1821-1827	2.3	1
102	One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. <i>Applied Surface Science</i> , 2019 , 469, 739-746	6.7	71

101	Highly Efficient Adsorption of Oils and Pollutants by Porous Ultrathin Oxygen-Modified BCN Nanosheets. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 3234-3242	8.3	12
100	Constructing Pd/2D-C3N4 composites for efficient photocatalytic H2 evolution through nonplasmon-induced bound electrons. <i>Applied Surface Science</i> , 2019 , 467-468, 151-157	6.7	53
99	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 330-336	21.8	78
98	Integrating CoOx cocatalyst on hexagonal Fe2O3 for effective photocatalytic oxygen evolution. Applied Surface Science, 2019 , 469, 933-940	6.7	33
97	Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. <i>Chemical Engineering Journal</i> , 2019 , 360, 1601-1612	14.7	103
96	Construction of 2D SnS2/g-C3N4 Z-scheme composite with superior visible-light photocatalytic performance. <i>Applied Surface Science</i> , 2019 , 467-468, 56-64	6.7	60
95	Chemical reduction implanted oxygen vacancy on the surface of 1D MoO3½/g-C3N4 composite for boosted LED light-driven photoactivity. <i>Journal of Materials Science</i> , 2019 , 54, 5343-5358	4.3	26
94	Steering charge transfer for boosting photocatalytic H2 evolution: Integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect. <i>Applied Catalysis B: Environmental</i> , 2019 , 245, 477-485	21.8	43
93	In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. <i>Applied Catalysis B: Environmental</i> , 2019 , 243, 151-160	21.8	57
92	Construction of a few-layer g-C3N4/\textsup MoO3 nanoneedles all-solid-state Z-scheme photocatalytic system for photocatalytic degradation. <i>Journal of Energy Chemistry</i> , 2019 , 29, 65-71	12	31
91	Comparison of Triangular Silver Nanoprisms with Different Capping Agents and Structural Size for H2O2 Etching-Based Biosensors. <i>Nano</i> , 2018 , 13, 1850022	1.1	6
90	Graphene quantum dots modified Ag3PO4 for facile synthesis and the enhanced photocatalytic performance. <i>Journal of the Chinese Advanced Materials Society</i> , 2018 , 6, 255-269		7
89	Gold/monolayer graphitic carbon nitride plasmonic photocatalyst for ultrafast electron transfer in solar-to-hydrogen energy conversion. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 760-770	11.3	30
88	High-Adsorption, Self-Extinguishing, Thermal, and Acoustic-Resistance Aerogels Based on Organic and Inorganic Waste Valorization from Cellulose Nanocrystals and Red Mud. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 7168-7180	8.3	50
87	0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 541, 188-194	5.1	44
86	Synthesis of PAN copolymer containing pendant 2-ureido-4[1H]-pyrimidone (UPy) units by RAFT polymerization and its adsorption behaviors of Hg2+. <i>Polymer Bulletin</i> , 2018 , 75, 4327-4339	2.4	3
85	Electrochemical immunosensor detection of tumor markers based on a GO composite nanoprobe for signal amplification. <i>Analytical Methods</i> , 2018 , 10, 526-532	3.2	13
84	An efficient method for the synthesis of a polymer brush via click chemistry and its ultrasensitive electrochemical detection of AFP. <i>Analytical Methods</i> , 2018 , 10, 2390-2397	3.2	4

83	Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. <i>Advanced Energy Materials</i> , 2018 , 8, 1703487	21.8	277
82	1D metallic MoO2-C as co-catalyst on 2D g-C3N4 semiconductor to promote photocatlaytic hydrogen production. <i>Applied Surface Science</i> , 2018 , 447, 732-739	6.7	52
81	Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. <i>Chemical Engineering Journal</i> , 2018 , 335, 282-289	14.7	121
80	Atomic Layered Titanium Sulfide Quantum Dots as Electrocatalysts for Enhanced Hydrogen Evolution Reaction. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1700895	4.6	22
79	Synergistic effects of MoO2 nanosheets and graphene-like C3N4 for highly improved visible light photocatalytic activities. <i>Applied Surface Science</i> , 2018 , 457, 1142-1150	6.7	20
78	Surface N modified 2D g-C3N4 nanosheets derived from DMF for photocatalytic H2 evolution. <i>Applied Surface Science</i> , 2018 , 459, 845-852	6.7	24
77	Multifunctional C-Doped CoFe2O4 Material as Cocatalyst to Promote Reactive Oxygen Species Generation over Magnetic Recyclable CloFe/AgAgX Photocatalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11968-11978	8.3	29
76	Electrochemical chiral sensor based on cellulose nanocrystals and multiwall carbon nanotubes for discrimination of tryptophan enantiomers. <i>Cellulose</i> , 2018 , 25, 3861-3871	5.5	14
75	Designing Visible-Light-Driven Z-scheme Catalyst 2D g-C3N4/Bi2MoO6: Enhanced Photodegradation Activity of Organic Pollutants. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1800520	1.6	13
74	Bio-mediated synthesis and antibacterial activity against aquatic pathogens of silver nanoparticles decorated titania nanosheets in dark and under solar-light irradiation. <i>Materials Technology</i> , 2018 , 33, 532-542	2.1	6
73	Highly Efficient Visible-Light-Driven Schottky Catalyst MoN/2D g-C3N4 for Hydrogen Production and Organic Pollutants Degradation. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 8863-88	3 7 0 ⁹	29
72	Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. <i>Mikrochimica Acta</i> , 2018 , 186, 17	5.8	20
71	A green Pickering emulsion stabilized by cellulose nanocrystals via RAFT polymerization. <i>Cellulose</i> , 2018 , 25, 77-85	5.5	24
70	Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 161, 394-402	6	32
69	Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 40-50	21.8	132
68	Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. <i>Applied Catalysis B: Environmental</i> , 2018 , 225, 154-161	21.8	210
67	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 379-385	21.8	176
66	A multidimensional In2S3IQuInS2 heterostructure for photocatalytic carbon dioxide reduction. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 3163-3169	6.8	45

65	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 17394-17400	3.9	61
64	Controllable synthesized heterostructure photocatalyst MoC@C/2D g-CN: enhanced catalytic performance for hydrogen production. <i>Dalton Transactions</i> , 2018 , 47, 14706-14712	4.3	28
63	Graphene oxide-modified LaVO4 nanocomposites with enhanced photocatalytic degradation efficiency of antibiotics. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2818-2828	6.8	22
62	A novel nanocomposite based on fluorescent turn-on gold nanostars for near-infrared photothermal therapy and self-theranostic caspase-3 imaging of glioblastoma tumor cell. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 170, 303-311	6	23
61	Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C(3)N(4):facile synthesis and the enhanced visible-light photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2017 , 494, 38-46	9.3	53
60	Transformation from Ag@Ag3PO4 to Ag@Ag2SO4 hybrid at room temperature: preparation and its visible light photocatalytic activity. <i>Journal of Nanoparticle Research</i> , 2017 , 19, 1	2.3	6
59	Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 429-437	21.8	175
58	Synthesis of novel polymer brushes of poly(acrylonitrile-g-N,N?-dimethylaminoethyl methacrylate) by nitrile modification. <i>Iranian Polymer Journal (English Edition)</i> , 2017 , 26, 355-364	2.3	4
57	Reversible Formation of g-C3N4 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Room-Temperature Gas-Sensing Properties. <i>Advanced Functional Materials</i> , 2017 , 27, 1700653	15.6	59
56	Design of 3D WO3/h-BN nanocomposites for efficient visible-light-driven photocatalysis. <i>RSC Advances</i> , 2017 , 7, 25160-25170	3.7	22
55	High Efficiency Photocatalytic Water Splitting Using 2D ⊞e2O3/g-C3N4 Z-Scheme Catalysts. <i>Advanced Energy Materials</i> , 2017 , 7, 1700025	21.8	501
54	Enhancing reactive oxygen species generation and photocatalytic performance via adding oxygen reduction reaction catalysts into the photocatalysts. <i>Applied Catalysis B: Environmental</i> , 2017 , 218, 174-	1 85 8	62
53	Designing Z-scheme 2D-C3N4/Ag3VO4 hybrid structures for improved photocatalysis and photocatalytic mechanism insight. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1600946	1.6	16
52	Construction of SnO2/graphene-like g-C3N4 with enhanced visible light photocatalytic activity. <i>RSC Advances</i> , 2017 , 7, 36101-36111	3.7	51
51	Construction and preparation of novel 2D metal-free few-layer BN modified graphene-like g-CN with enhanced photocatalytic performance. <i>Dalton Transactions</i> , 2017 , 46, 11250-11258	4.3	39
50	Hydrothermal synthesis of mpg-C3N4 and Bi2WO6 nest-like structure nanohybrids with enhanced visible light photocatalytic activities. <i>RSC Advances</i> , 2017 , 7, 38682-38690	3.7	59
49	Metallic 1T-TiS2 nanodots anchored on a 2D graphitic C3N4 nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. <i>RSC Advances</i> , 2017 , 7, 55269-55.	275	7
48	Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots. <i>Science Advances</i> , 2017 , 3, e1701500	14.3	70

47	Mercury detection based on label-free and isothermal enzyme-free amplified fluorescence platform. <i>Talanta</i> , 2017 , 162, 368-373	6.2	12
46	Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 112-117	21.8	62
45	Facile One-Pot Green Synthesis and Antibacterial Activities of GO/Ag Nanocomposites. <i>Acta Metallurgica Sinica (English Letters)</i> , 2017 , 30, 36-44	2.5	11
44	Biogenic synthesis of silver nanoparticles using ginger (Zingiber officinale) extract and their antibacterial properties against aquatic pathogens. <i>Acta Oceanologica Sinica</i> , 2017 , 36, 95-100	1	38
43	A silver on 2D white-C3N4 support photocatalyst for mechanistic insights: synergetic utilization of plasmonic effect for solar hydrogen evolution. <i>RSC Advances</i> , 2016 , 6, 112420-112428	3.7	28
42	Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. <i>Nano Energy</i> , 2016 , 27, 138-146	17.1	303
41	Preparation of corn stalk-based adsorbents and their specific application in metal ions adsorption. <i>Chemical Papers</i> , 2016 , 70,	1.9	8
40	Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C 3 N 4 nanosheets with highly efficient photocatalytic H 2 evolution from water under visible light. <i>Applied Catalysis B: Environmental</i> , 2016 , 187, 144-153	21.8	324
39	BN nanosheets modified WO 3 photocatalysts for enhancing photocatalytic properties under visible light irradiation. <i>Journal of Alloys and Compounds</i> , 2016 , 660, 48-54	5.7	43
38	Three-dimensionally ordered macroporous WO3 modified Ag3PO4 with enhanced visible light photocatalytic performance. <i>Ceramics International</i> , 2016 , 42, 1392-1398	5.1	24
37	Construction of a 2D Graphene-Like MoS2/C3N4 Heterojunction with Enhanced Visible-Light Photocatalytic Activity and Photoelectrochemical Activity. <i>Chemistry - A European Journal</i> , 2016 , 22, 476	5 4 -83	135
36	PMDETA as an efficient catalyst for bulk reversible complexation mediated polymerization (RCMP) in the absence of additional metal salts and deoxygenation. <i>RSC Advances</i> , 2016 , 6, 97455-97462	3.7	14
35	Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2☑/g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. <i>Nano Research</i> , 2016 , 9, 1969-1982	10	52
34	Exonuclease III assisted and label-free detection of mercury ion based on toehold strand displacement amplification strategy. <i>Analytical Methods</i> , 2016 , 8, 7054-7060	3.2	6
33	WO3 nanorod photocatalysts decorated with few-layer g-C3N4 nanosheets: controllable synthesis and photocatalytic mechanism research. <i>RSC Advances</i> , 2016 , 6, 80193-80200	3.7	16
32	In-Situ-Reduced Synthesis of Till+ Self-Doped TiOllg-CNIHeterojunctions with High Photocatalytic Performance under LED Light Irradiation. <i>ACS Applied Materials & Description (Control of the Control of</i>	9.5	422
31	Direct Synthesis of Porous Nanorod-Type Graphitic Carbon Nitride/CuO Composite from Cu-Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1276-80	4.5	118
30	One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cufhelamine supramolecular network and its enhanced visible-light-driven photocatalysis. <i>Journal of Solid State Chemistry</i> , 2015 , 228, 60-64	3.3	105

29	Synthesis and characterization of BN/Bi2WO6 composite photocatalysts with enhanced visible-light photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 88832-88840	3.7	32
28	Novel visible-light-driven CQDs/Bi 2 WO 6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. <i>Applied Catalysis B: Environmental</i> , 2015 , 168-169, 51-61	21.8	410
27	Synthesis of few-layer MoS2 nanosheet-loaded Ag3PO4 for enhanced photocatalytic activity. <i>Dalton Transactions</i> , 2015 , 44, 3057-66	4.3	66
26	g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity. <i>Journal of Physics and Chemistry of Solids</i> , 2015 , 76, 112-119	3.9	86
25	Making Good Use of Food Wastes: Green Synthesis of Highly Stabilized Silver Nanoparticles from Grape Seed Extract and Their Antimicrobial Activity. <i>Food Biophysics</i> , 2015 , 10, 12-18	3.2	43
24	Iron-mediated activators generated by electron transfer for atom-transfer radical polymerization of methyl methacrylate using ionic liquid as ligand and Fe(0) wire as reducing agent. <i>Polymer International</i> , 2015 , 64, 1754-1761	3.3	3
23	Magnetic g-C3N4/NiFe2O4 hybrids with enhanced photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 57960)- <u>5</u> .7/967	7 92
22	Controllable synthesis of CeO2/g-C3N4 composites and their applications in the environment. <i>Dalton Transactions</i> , 2015 , 44, 7021-31	4.3	101
21	Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of CuI+. <i>Nanoscale</i> , 2014 , 6, 1406-15	7.7	308
20	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
19	CNT/Ag3PO4 composites with highly enhanced visible light photocatalytic activity and stability. <i>Chemical Engineering Journal</i> , 2014 , 241, 35-42	14.7	98
18	Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 2563	13	288
17	Graphene-analogue boron nitride/Ag3PO4 composite for efficient visible-light-driven photocatalysis. <i>RSC Advances</i> , 2014 , 4, 56853-56862	3.7	32
16	Celastrol-modified TiO2 nanoparticles: effects of celastrol on the particle size and visible-light photocatalytic activity. <i>RSC Advances</i> , 2014 , 4, 12098-12104	3.7	18
15	Fabrication of Ti3+ self-doped TiO2(A) nanoparticle/TiO2(R) nanorod heterojunctions with enhanced visible-light-driven photocatalytic properties. <i>RSC Advances</i> , 2014 , 4, 37061-37069	3.7	38
14	Preparation of Wheat Straw Matrix-g-Polyacrylonitrile-Based Adsorbent by SET-LRP and Its Applications for Heavy Metal Ion Removal. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 1843-18	48 ^{.3}	24
13	Improving the photocatalytic activity and stability of graphene-like BN/AgBr composites. <i>Applied Surface Science</i> , 2014 , 313, 1-9	6.7	58
12	Mussel-inspired polydopamine biopolymer decorated with magnetic nanoparticles for multiple pollutants removal. <i>Journal of Hazardous Materials</i> , 2014 , 270, 27-34	12.8	196

11	Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic. <i>Chemical Engineering Journal</i> , 2014 , 243, 60-67	14.7	164
10	Graphene-based nanoprobes and a prototype optical biosensing platform. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 251-5	11.8	33
9	Synthesis and characterization of g-C3N4/MoO3 photocatalyst with improved visible-light photoactivity. <i>Applied Surface Science</i> , 2013 , 283, 25-32	6.7	175
8	Highly sensitive recognition of Pb(2+) using Pb(2+) triggered exonuclease aided DNA recycling. <i>Biosensors and Bioelectronics</i> , 2013 , 47, 520-3	11.8	29
7	Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. <i>Dalton Transactions</i> , 2013 , 42, 8606-16	4.3	382
6	Novel visible-light-driven AgX/graphite-like C3N4 (X=Br, I) hybrid materials with synergistic photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2013 , 129, 182-193	21.8	525
5	The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. <i>Dalton Transactions</i> , 2013 , 42, 7604-13	4.3	206
4	Spectroscopic Studies on the Interaction of Vitamin C with Bovine Serum Albumin. <i>Journal of Solution Chemistry</i> , 2009 , 38, 15-25	1.8	55
3	Spectroscopic studies on the interaction between nicotinamide and bovine serum albumin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008 , 71, 984-8	4.4	58
2	Steering Hole Transfer from the Light Absorber to Oxygen Evolution Sites for Photocatalytic Overall Water Splitting. <i>Advanced Materials Interfaces</i> ,2101158	4.6	Ο
1	In Situ Growth and Activation of Ag/Ag2S Nanowire Clusters by H2S Plasma Treatment for Promoted Electrocatalytic CO2 Reduction. <i>Advanced Sustainable Systems</i> ,2100256	5.9	3