Enzheng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3746928/publications.pdf Version: 2024-02-01

ENTHENC SHI

#	Article	IF	CITATIONS
1	Soft-lock drawing of super-aligned carbon nanotube bundles for nanometre electrical contacts. Nature Nanotechnology, 2022, 17, 278-284.	31.5	24
2	Quasi-2D halide perovskite crystals and their optoelectronic applications. Journal of Materials Chemistry A, 2022, 10, 19169-19183.	10.3	16
3	Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nature Nanotechnology, 2021, 16, 584-591.	31.5	88
4	Halide Perovskite Epitaxial Heterostructures. Accounts of Materials Research, 2020, 1, 213-224.	11.7	20
5	Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites. Nature Communications, 2020, 11, 664.	12.8	167
6	Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature, 2020, 580, 614-620.	27.8	284
7	Highly Stable Lead-Free Perovskite Field-Effect Transistors Incorporating Linear π-Conjugated Organic Ligands. Journal of the American Chemical Society, 2019, 141, 15577-15585.	13.7	180
8	Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites. ACS Nano, 2019, 13, 1635-1644.	14.6	79
9	Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.	7.1	46
10	Carbon-Nanotube-Wrapped Spider Silks for Directed Cardiomyocyte Growth and Electrophysiological Detection. ACS Applied Materials & Interfaces, 2018, 10, 6793-6798.	8.0	26
11	Two-dimensional halide perovskite nanomaterials and heterostructures. Chemical Society Reviews, 2018, 47, 6046-6072.	38.1	339
12	Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles. Nature Communications, 2018, 9, 5258.	12.8	188
13	<i>Ex Vivo</i> Study of Telluride Nanowires in Minigut. Journal of Biomedical Nanotechnology, 2018, 14, 978-986.	1.1	19
14	Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts. Nature Catalysis, 2018, 1, 349-355.	34.4	244
15	Experimental and Theoretical Study on Well-Tunable Metal Oxide Doping towards High- Performance Thermoelectrics. ES Energy & Environments, 2018, , .	1.1	3
16	Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures. Nano Research, 2017, 10, 1498-1509.	10.4	6
17	Highly Crumpled All-Carbon Transistors for Brain Activity Recording. Nano Letters, 2017, 17, 71-77.	9.1	38
18	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional Materials. 2016. 26. 2078-2084.	14.9	328

Enzheng Shi

#	Article	IF	CITATIONS
19	Strain Sensing: Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors (Adv.) Tj ETQq1 1	0.784314 14.9	rgBT /Over
20	Blown Bubble Assembly of Graphene Oxide Patches for Transparent Electrodes in Carbon–Silicon Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 28330-28336.	8.0	5
21	Highly Porous Core–Shell Structured Graphene-Chitosan Beads. ACS Applied Materials & Interfaces, 2015, 7, 14439-14445.	8.0	56
22	Comparison of Nanocarbon–Silicon Solar Cells with Nanotube–Si or Graphene–Si Contact. ACS Applied Materials & Interfaces, 2015, 7, 17088-17094.	8.0	17
23	Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method. Nano Research, 2015, 8, 1746-1754.	10.4	21
24	Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene. Nanoscale, 2015, 7, 7550-7558.	5.6	65
25	Improvement of graphene–Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy, 2015, 17, 216-223.	16.0	30
26	Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy, 2015, 12, 401-409.	16.0	100
27	Carbon Nanotube Network Embroidered Graphene Films for Monolithic All arbon Electronics. Advanced Materials, 2015, 27, 682-688.	21.0	62
28	Largeâ€Deformation, Multifunctional Artificial Muscles Based on Singleâ€Walled Carbon Nanotube Yarns. Advanced Engineering Materials, 2015, 17, 14-20.	3.5	36
29	Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Research, 2015, 8, 900-906.	10.4	32
30	Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research, 2014, 7, 209-218.	10.4	115
31	Core-Double-Shell, Carbon Nanotube@Polypyrrole@MnO ₂ Sponge as Freestanding, Compressible Supercapacitor Electrode. ACS Applied Materials & Interfaces, 2014, 6, 5228-5234.	8.0	298
32	A compressible mesoporous SiO2 sponge supported by a carbon nanotube network. Nanoscale, 2014, 6, 3585.	5.6	34
33	Multifunctional graphene sheet–nanoribbon hybrid aerogels. Journal of Materials Chemistry A, 2014, 2, 14994-15000.	10.3	54
34	Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating. Carbon, 2014, 76, 19-26.	10.3	78
35	Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano, 2014, 8, 6797-6804.	14.6	427
36	Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, 5, 8472.	5.6	101

3

ENZHENG SHI

#	Article	IF	CITATIONS
37	Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	5.8	25
38	Colloidal Antireflection Coating Improves Graphene–Silicon Solar Cells. Nano Letters, 2013, 13, 1776-1781.	9.1	303
39	Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale, 2013, 5, 2403.	5.6	44
40	Highly Twisted Double-Helix Carbon Nanotube Yarns. ACS Nano, 2013, 7, 1446-1453.	14.6	88
41	Overtwisted, Resolvable Carbon Nanotube Yarn Entanglement as Strain Sensors and Rotational Actuators. ACS Nano, 2013, 7, 8128-8135.	14.6	94
42	TiO2-Coated Carbon Nanotube-Silicon Solar Cells with Efficiency of 15%. Scientific Reports, 2012, 2, 884.	3.3	141
43	Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes. Journal of Materials Chemistry, 2012, 22, 24721.	6.7	5
44	Wire-supported CdSe nanowire array photoelectrochemical solar cells. Physical Chemistry Chemical Physics, 2012, 14, 3583.	2.8	22
45	Porous, Platinum Nanoparticle-Adsorbed Carbon Nanotube Yarns for Efficient Fiber Solar Cells. ACS Nano, 2012, 6, 7191-7198.	14.6	84
46	Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes. Nano Research, 2012, 5, 595-604.	10.4	9
47	Nanobelt–carbon nanotube cross-junction solar cells. Energy and Environmental Science, 2012, 5, 6119.	30.8	11
48	Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer. Physical Chemistry Chemical Physics, 2012, 14, 8391.	2.8	68
49	Super‣tretchable Springâ€Like Carbon Nanotube Ropes. Advanced Materials, 2012, 24, 2896-2900.	21.0	193
50	Carbon Nanotubes: Superâ€Stretchable Springâ€Like Carbon Nanotube Ropes (Adv. Mater. 21/2012). Advanced Materials, 2012, 24, 2935-2935.	21.0	3
51	Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes. Nanoscale, 2012, 4, 4954.	5.6	36
52	Photocatalytic, recyclable CdS nanoparticle-carbon nanotube hybrid sponges. Nano Research, 2012, 5, 265-271.	10.4	37
53	Suspended, Straightened Carbon Nanotube Arrays by Gel Chapping. ACS Nano, 2011, 5, 5656-5661.	14.6	18
54	Graphene-CdSe nanobelt solar cells with tunable configurations. Nano Research, 2011, 4, 891-900.	10.4	67

#	Article	IF	CITATIONS
55	Cul-Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes. Nano Research, 2011, 4, 979-986.	10.4	20
56	Carbon Nanotube and CdSe Nanobelt Schottky Junction Solar Cells. Nano Letters, 2010, 10, 3583-3589.	9.1	90