
## **Guadalupe Sabio**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3746725/publications.pdf Version: 2024-02-01



CHADALLIDE SABIO

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Myeloid p38 activation maintains macrophage–liver crosstalk and BAT thermogenesis through<br>ILâ€12–FGF21 axis. Hepatology, 2023, 77, 874-887.                                                                                                                                                             | 3.6 | 3         |
| 2  | Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology, 2022, 75, 550-566.                                                                                                                                                 | 3.6 | 25        |
| 3  | Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function. Journal of Hepatology, 2022, 76, 11-24.                                                                                                                                                                               | 1.8 | 16        |
| 4  | Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nature Communications, 2022, 13, 1096.                                                                                                        | 5.8 | 22        |
| 5  | Metabolic-associated fatty liver disease: From simple steatosis toward liver cirrhosis and potential complications. Proceedings of the Third Translational Hepatology Meeting, organized by the Spanish Association for the Study of the Liver (AEEH). GastroenterologAa Y HepatologAa, 2022, 45, 724-734. | 0.2 | 3         |
| 6  | Hypothyroidism confers tolerance to cerebral malaria. Science Advances, 2022, 8, eabj7110.                                                                                                                                                                                                                 | 4.7 | 5         |
| 7  | p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent<br>mitochondrial dynamics. Scientific Reports, 2022, 12, 5938.                                                                                                                                                  | 1.6 | 7         |
| 8  | Targeting ERK3/MK5 complex for treatment of obesity and diabetes. Biochemical and Biophysical Research Communications, 2022, 612, 119-125.                                                                                                                                                                 | 1.0 | 1         |
| 9  | Stress-activated kinases signaling pathways in cancer development. Current Opinion in Physiology, 2021, 19, 22-31.                                                                                                                                                                                         | 0.9 | 0         |
| 10 | Brain JNK and metabolic disease. Diabetologia, 2021, 64, 265-274.                                                                                                                                                                                                                                          | 2.9 | 21        |
| 11 | Limited survival and impaired hepatic fasting metabolism in mice with constitutive Rag GTPase signaling. Nature Communications, 2021, 12, 3660.                                                                                                                                                            | 5.8 | 13        |
| 12 | Circadian Clock and Liver Cancer. Cancers, 2021, 13, 3631.                                                                                                                                                                                                                                                 | 1.7 | 22        |
| 13 | Magnesium accumulation upon cyclin M4 silencing activates microsomal triglyceride transfer protein improving NASH. Journal of Hepatology, 2021, 75, 34-45.                                                                                                                                                 | 1.8 | 21        |
| 14 | Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Molecular<br>Metabolism, 2021, 50, 101190.                                                                                                                                                                              | 3.0 | 25        |
| 15 | O-GlcNAcylated p53 in the liver modulates hepatic glucose production. Nature Communications, 2021, 12, 5068.                                                                                                                                                                                               | 5.8 | 36        |
| 16 | Protocol for the assessment of mTOR activity in mouse primary hepatocytes. STAR Protocols, 2021, 2, 100918.                                                                                                                                                                                                | 0.5 | 2         |
| 17 | p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biology, 2021, 19,<br>e3001447.                                                                                                                                                                                      | 2.6 | 8         |
| 18 | Title: p38l̂´ Regulates IL6 Expression Modulating ERK Phosphorylation in Preadipocytes. Frontiers in Cell<br>and Developmental Biology, 2021, 9, 708844.                                                                                                                                                   | 1.8 | 1         |

GUADALUPE SABIO

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The role of stress kinases in metabolic disease. Nature Reviews Endocrinology, 2020, 16, 697-716.                                                                                                         | 4.3  | 46        |
| 20 | Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.                                      | 4.7  | 31        |
| 21 | Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Frontiers in Endocrinology, 2020, 11, 572089.                                                                                     | 1.5  | 25        |
| 22 | p38 MAPK Pathway in the Heart: New Insights in Health and Disease. International Journal of Molecular<br>Sciences, 2020, 21, 7412.                                                                        | 1.8  | 73        |
| 23 | JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>16492-16499. | 3.3  | 43        |
| 24 | Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. ELife, 2020, 9, .                                                                                           | 2.8  | 26        |
| 25 | CD69 Targeting Enhances Anti-vaccinia Virus Immunity. Journal of Virology, 2019, 93, .                                                                                                                    | 1.5  | 8         |
| 26 | p38Î <sup>3</sup> is essential for cell cycle progression and liver tumorigenesis. Nature, 2019, 568, 557-560.                                                                                            | 13.7 | 72        |
| 27 | Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. Journal of<br>Experimental Medicine, 2019, 216, 1108-1119.                                                             | 4.2  | 63        |
| 28 | p107 Deficiency Increases Energy Expenditure by Inducing Brownâ€Fat Thermogenesis and Browning of<br>White Adipose Tissue. Molecular Nutrition and Food Research, 2019, 63, e1801096.                     | 1.5  | 7         |
| 29 | Anti-CD69 therapy induces rapid mobilization and high proliferation of HSPCs through S1P and mTOR.<br>Leukemia, 2018, 32, 1445-1457.                                                                      | 3.3  | 19        |
| 30 | Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Molecular Metabolism, 2018, 8, 132-143.                                 | 3.0  | 28        |
| 31 | Protein kinase D1 deletion in adipocytes enhances energy dissipation and protects against adiposity.<br>EMBO Journal, 2018, 37, .                                                                         | 3.5  | 23        |
| 32 | p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.                                                                                                 | 2.6  | 30        |
| 33 | p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nature<br>Communications, 2018, 9, 3432.                                                                            | 5.8  | 41        |
| 34 | Hepatic p63 regulates steatosis via IKKβ/ER stress. Nature Communications, 2017, 8, 15111.                                                                                                                | 5.8  | 45        |
| 35 | MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.                                                                                                          | 5.8  | 54        |
| 36 | Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy<br>Balance. Cell Metabolism, 2017, 26, 212-229.e12.                                                      | 7.2  | 167       |

GUADALUPE SABIO

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | p38Î <sup>3</sup> and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO Journal, 2016, 35,<br>536-552.                                                                 | 3.5 | 61        |
| 38 | p38Î <sup>3</sup> and Î′ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation.<br>Nature Communications, 2016, 7, 10477.                                    | 5.8 | 68        |
| 39 | Stress kinases in the modulation of metabolism and energy balance. Journal of Molecular<br>Endocrinology, 2015, 55, R11-R22.                                                                     | 1.1 | 64        |
| 40 | TNF and MAP kinase signalling pathways. Seminars in Immunology, 2014, 26, 237-245.                                                                                                               | 2.7 | 507       |
| 41 | The PPARα-FGF21 Hormone Axis Contributes to Metabolic Regulation by the Hepatic JNK Signaling Pathway. Cell Metabolism, 2014, 20, 512-525.                                                       | 7.2 | 149       |
| 42 | Specific calcineurin targeting in macrophages confers resistance to inflammation via MKPâ€1 and p38.<br>EMBO Journal, 2014, 33, 1117-1133.                                                       | 3.5 | 29        |
| 43 | Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. Journal of Clinical<br>Investigation, 2014, 124, 1869-1869.                                                  | 3.9 | 2         |
| 44 | Central Melanin-Concentrating Hormone Influences Liver and Adipose Metabolism Via Specific<br>Hypothalamic Nuclei and Efferent Autonomic/JNK1 Pathways. Gastroenterology, 2013, 144, 636-649.e6. | 0.6 | 79        |
| 45 | Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis. Journal of Clinical<br>Investigation, 2013, 123, 164-178.                                                    | 3.9 | 90        |
| 46 | Activation of p38 MAPK in CD4 T cells controls IL-17 production and autoimmune encephalomyelitis.<br>Blood, 2011, 118, 3290-3300.                                                                | 0.6 | 141       |
| 47 | Requirement of c-Jun NH <sub>2</sub> -Terminal Kinase for Ras-Initiated Tumor Formation. Molecular<br>and Cellular Biology, 2011, 31, 1565-1576.                                                 | 1.1 | 93        |
| 48 | Translational Control of NKT Cell Cytokine Production by p38 MAPK. Journal of Immunology, 2011, 186, 4140-4146.                                                                                  | 0.4 | 25        |
| 49 | cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends in<br>Biochemical Sciences, 2010, 35, 490-496.                                                    | 3.7 | 138       |
| 50 | Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cellular Signalling, 2010, 22, 660-667.                                                                                            | 1.7 | 130       |
| 51 | Role of Muscle c-Jun NH <sub>2</sub> -Terminal Kinase 1 in Obesity-Induced Insulin Resistance.<br>Molecular and Cellular Biology, 2010, 30, 106-115.                                             | 1.1 | 132       |
| 52 | Role of the hypothalamic–pituitary–thyroid axis in metabolic regulation by JNK1. Genes and<br>Development, 2010, 24, 256-264.                                                                    | 2.7 | 103       |
| 53 | p38Î <sup>3</sup> regulates interaction of nuclear PSF and RNA with the tumour-suppressor hDlg in response to osmotic shock. Journal of Cell Science, 2010, 123, 2596-2604.                      | 1.2 | 21        |
| 54 | Nuclear Localization of p38 MAPK in Response to DNA Damage. International Journal of Biological<br>Sciences, 2009, 5, 428-437.                                                                   | 2.6 | 119       |

GUADALUPE SABIO

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Proteolysis of the tumour suppressor hDlg in response to osmotic stress is mediated by caspases and independent of phosphorylation. FEBS Journal, 2009, 276, 387-400.                                                     | 2.2  | 7         |
| 56 | Induction of Hepatitis by JNK-Mediated Expression of TNF-α. Cell, 2009, 136, 249-260.                                                                                                                                     | 13.5 | 134       |
| 57 | Prevention of Steatosis by Hepatic JNK1. Cell Metabolism, 2009, 10, 491-498.                                                                                                                                              | 7.2  | 130       |
| 58 | Phosphorylation by p38 MAPK as an Alternative Pathway for GSK3β Inactivation. Science, 2008, 320, 667-670.                                                                                                                | 6.0  | 414       |
| 59 | A Stress Signaling Pathway in Adipose Tissue Regulates Hepatic Insulin Resistance. Science, 2008, 322, 1539-1543.                                                                                                         | 6.0  | 506       |
| 60 | Alternative p38 MAPK Pathways. , 2007, , 17-32.                                                                                                                                                                           |      | 2         |
| 61 | p38 <sup>ĵ3</sup> regulates the localisation of SAP97 in the cytoskeleton by modulating its interaction with GKAP.<br>EMBO Journal, 2005, 24, 1134-1145.                                                                  | 3.5  | 221       |
| 62 | BIRB796 Inhibits All p38 MAPK Isoforms in Vitro and in Vivo. Journal of Biological Chemistry, 2005, 280, 19472-19479.                                                                                                     | 1.6  | 265       |
| 63 | Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13058-13063. | 3.3  | 164       |
| 64 | Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD-95 by activation of SAPK3/p38gamma and ERK1/ERK2. Biochemical Journal, 2004, 380, 19-30.                                          | 1.7  | 92        |
| 65 | Neuroprotective Effects of Lithium - Pointing out Protein Phosphatases as Drug Targets?. Current<br>Medicinal Chemistry - Central Nervous System Agents, 2003, 3, 335-339.                                                | 0.6  | 1         |
| 66 | Lithium blocks the PKB and CSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cellular Signalling, 2002, 14, 557-562.                                                                             | 1.7  | 94        |
| 67 | Different dependence of lithium and valproate on PI3K/PKB pathway. Bipolar Disorders, 2002, 4, 195-200.                                                                                                                   | 1.1  | 25        |
| 68 | Mechanisms of MPP + incorporation into cerebellar granule cells. Brain Research Bulletin, 2001, 56, 119-123.                                                                                                              | 1.4  | 25        |
| 69 | Glu-256 is a main structural determinant for oligomerisation of human arginase I. FEBS Letters, 2001, 501, 161-165.                                                                                                       | 1.3  | 18        |
| 70 | Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. Journal of Neurochemistry, 2001, 78, 199-206.                                          | 2.1  | 87        |