
Li-Chiang Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3746673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nature Communications, 2022, 13, 266.	5.8	76
2	New sterically hindered polyvinylamine-containing membranes for CO2 capture from flue gas. Journal of Membrane Science, 2022, 645, 120195.	4.1	12
3	Chemistry-Encoded Convolutional Neural Networks for Predicting Gaseous Adsorption in Porous Materials. Journal of Physical Chemistry C, 2022, 126, 2813-2822.	1.5	19
4	Scalable robust nano-porous Zr-based MOF adsorbent with high-capacity for sustainable water purification. Separation and Purification Technology, 2022, 288, 120620.	3.9	32
5	Computational Prediction of Water Sorption in Facilitated Transport Membranes. Journal of Physical Chemistry C, 2022, 126, 3661-3670.	1.5	9
6	Responses to the comments on "Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights― AICHE Journal, 2022, 68, .	1.8	3
7	Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. Environmental Science & Technology, 2022, 56, 5775-5785.	4.6	21
8	Deep learning neural network potential for simulating gaseous adsorption in metal–organic frameworks. Materials Advances, 2022, 3, 5299-5303.	2.6	4
9	Computational Study of Alkane Adsorption in BrÃ̧nsted Acid Zeolites for More Efficient Alkane Cracking. Langmuir, 2022, 38, 7665-7677.	1.6	2
10	A new measurement of amine steric hindrance – N exposure. Separation and Purification Technology, 2022, 299, 121601.	3.9	4
11	Highly CO ₂ Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Advanced Functional Materials, 2021, 31, 2006924.	7.8	42
12	Improving Computational Assessment of Porous Materials for Water Adsorption Applications via Flat Histogram Methods. Journal of Physical Chemistry C, 2021, 125, 4253-4266.	1.5	16
13	Nanoporous Material Recognition via 3D Convolutional Neural Networks: Prediction of Adsorption Properties. Journal of Physical Chemistry Letters, 2021, 12, 2279-2285.	2.1	22
14	A flame-retardant post-synthetically functionalized COF sponge as absorbent for spilled oil recovery. Journal of Materials Science, 2021, 56, 13031.	1.7	6
15	Facile Defect Engineering of Zeolitic Imidazolate Frameworks towards Enhanced C ₃ H ₆ /C ₃ H ₈ Separation Performance. Advanced Functional Materials, 2021, 31, 2105577.	7.8	26
16	Suppressing Defect Formation in Metal–Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS Applied Materials & Interfaces, 2021, 13, 41904-41915.	4.0	23
17	Transport-Relevant Pore Limiting Diameter for Molecular Separations in Metal–Organic Framework Membranes. Journal of Physical Chemistry C, 2021, 125, 20416-20425.	1.5	6
18	Solubility selectivity-enhanced SIFSIX-3-Ni-containing mixed matrix membranes for improved CO2/CH4 separation efficiency. Journal of Membrane Science, 2021, 633, 119390.	4.1	13

#	Article	IF	CITATIONS
19	Toward Sustainable Metal–Organic Frameworks for Post-Combustion Carbon Capture by Life Cycle Assessment and Molecular Simulation. ACS Sustainable Chemistry and Engineering, 2021, 9, 12132-12141.	3.2	10
20	Monte Carlo simulations for water adsorption in porous materials: Best practices and new insights. AICHE Journal, 2021, 67, e17447.	1.8	19
21	Pillared-bilayer metal-organic framework membranes for dehydration of isopropanol. Microporous and Mesoporous Materials, 2021, 326, 111344.	2.2	15
22	NaP1 zeolite membranes with high selectivity for water-alcohol pervaporation. Journal of Membrane Science, 2021, 639, 119762.	4.1	18
23	Coulombic effect on permeation of CO2 in metal-organic framework membranes. Journal of Membrane Science, 2021, 639, 119742.	4.1	23
24	In Silico Screening of Zeolites for the Highly Selective Adsorption of Central C–C Bonds toward More Effective Alkane Cracking. Industrial & Engineering Chemistry Research, 2021, 60, 15174-15183.	1.8	2
25	Fundamental Insights on Hydration Environment of Boric Acid and Its Role in Separation from Saline Water. Journal of Physical Chemistry C, 2020, 124, 1438-1445.	1.5	35
26	Machine Learning-Aided Computational Study of Metal–Organic Frameworks for Sour Gas Sweetening. Journal of Physical Chemistry C, 2020, 124, 27580-27591.	1.5	29
27	Exploiting interior surface functionalization in reverse osmosis desalination membranes to mitigate permeability–selectivity trade-off: Molecular simulations of nanotube-based membranes. Desalination, 2020, 491, 114537.	4.0	17
28	Toward Long-Lasting Low-Haze Antifog Coatings through the Deposition of Zeolites. Industrial & Engineering Chemistry Research, 2020, 59, 13042-13050.	1.8	8
29	Beyond the BET Analysis: The Surface Area Prediction of Nanoporous Materials Using a Machine Learning Method. Journal of Physical Chemistry Letters, 2020, 11, 5412-5417.	2.1	37
30	Potential and Design of Zeolite Nanosheets as Pervaporation Membranes for Ethanol Extraction. Industrial & Engineering Chemistry Research, 2020, 59, 12845-12854.	1.8	12
31	Efficient and Accurate Charge Assignments via a Multilayer Connectivity-Based Atom Contribution (m-CBAC) Approach. Journal of Physical Chemistry C, 2020, 124, 11428-11437.	1.5	21
32	Computational Evaluation of Carriers in Facilitated Transport Membranes for Postcombustion Carbon Capture. Journal of Physical Chemistry C, 2020, 124, 25322-25330.	1.5	25
33	Surface Area Determination of Porous Materials Using the Brunauer–Emmett–Teller (BET) Method: Limitations and Improvements. Journal of Physical Chemistry C, 2019, 123, 20195-20209.	1.5	130
34	Electrostatic Potential Optimized Molecular Models for Molecular Simulations: CO, CO2, COS, H2S, N2, N2O, and SO2. Journal of Chemical Theory and Computation, 2019, 15, 6323-6332.	2.3	12
35	Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chemistry of Materials, 2019, 31, 7666-7677.	3.2	32
36	Exploring the Potential of Defective UiO-66 as Reverse Osmosis Membranes for Desalination. Journal of Physical Chemistry C, 2019, 123, 16118-16126.	1.5	35

#	Article	IF	CITATIONS
37	Computational discovery of nanoporous materials for energy- and environment-related applications. Molecular Simulation, 2019, 45, 1122-1147.	0.9	23
38	Excimer-Mediated Intermolecular Charge Transfer in Self-Assembled Donor–Acceptor Dyes on Metal Oxides. Journal of the American Chemical Society, 2019, 141, 8727-8731.	6.6	22
39	Response to "Impact of Zeolite Structure on Entropic–Enthalpic Contributions to Alkane Monomolecular Cracking: An IR Operando Study― Chemistry - A European Journal, 2019, 25, 7225-7226.	1.7	1
40	Decoupling pH Dependence of Flat Band Potential in Aqueous Dye-Sensitized Electrodes. Journal of Physical Chemistry C, 2019, 123, 8681-8687.	1.5	17
41	Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory. Environmental Science & Technology, 2019, 53, 4161-4172.	4.6	51
42	Hexagonal Superalignment of Nano-Objects with Tunable Separation in a Dilute and Spacer-Free Solution. Physical Review Letters, 2019, 123, 238002.	2.9	10
43	Role of Structural Defects in the Water Adsorption Properties of MOF-801. Journal of Physical Chemistry C, 2018, 122, 5545-5552.	1.5	68
44	Understanding BrÃ,nsted-Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory. ChemPhysChem, 2018, 19, 338-338.	1.0	0
45	Transferability of CO ₂ Force Fields for Prediction of Adsorption Properties in All-Silica Zeolites. Journal of Physical Chemistry C, 2018, 122, 10892-10903.	1.5	12
46	Atomistic Investigations of the Effects of Si/Al Ratio and Al Distribution on the Adsorption Selectivity of <i>n</i> -Alkanes in BrÃ,nsted-Acid Zeolites. Journal of Physical Chemistry C, 2018, 122, 9397-9410.	1.5	35
47	Investigation of the Water Adsorption Properties and Structural Stability of MIL-100(Fe) with Different Anions. Langmuir, 2018, 34, 4180-4187.	1.6	33
48	Understanding BrÃ,nstedâ€Acid Catalyzed Monomolecular Reactions of Alkanes in Zeolite Pores by Combining Insights from Experiment and Theory. ChemPhysChem, 2018, 19, 341-358.	1.0	21
49	Potential of polarizable force fields for predicting the separation performance of small hydrocarbons in M-MOF-74. Physical Chemistry Chemical Physics, 2018, 20, 28848-28859.	1.3	18
50	Frontispiece: Tuning Gas Adsorption by Metal Node Blocking in Photoresponsive Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, .	1.7	0
51	Bioinspired Metal–Organic Framework for Trace CO ₂ Capture. Journal of the American Chemical Society, 2018, 140, 12662-12666.	6.6	132
52	Exploring the potential and design of zeolite nanosheets as pervaporation membranes for ethanol extraction. Chemical Communications, 2018, 54, 13200-13203.	2.2	13
53	Polarizable Force Field for CO ₂ in M-MOF-74 Derived from Quantum Mechanics. Journal of Physical Chemistry C, 2018, 122, 24488-24498.	1.5	29
54	Systematic molecular model development with reliable charge distributions for gaseous adsorption in nanoporous materials. Journal of Materials Chemistry A, 2018, 6, 16029-16042.	5.2	12

#	Article	IF	CITATIONS
55	Rational Design of Two-Dimensional Hydrocarbon Polymer as Ultrathin-Film Nanoporous Membranes for Water Desalination. ACS Applied Materials & Interfaces, 2018, 10, 18778-18786.	4.0	31
56	Tuning Gas Adsorption by Metal Node Blocking in Photoresponsive Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 15167-15172.	1.7	33
57	Polarizable Force Fields for CO ₂ and CH ₄ Adsorption in M-MOF-74. Journal of Physical Chemistry C, 2017, 121, 4659-4673.	1.5	87
58	Theoretical Analysis of the Influence of Pore Geometry on Monomolecular Cracking and Dehydrogenation ofn-Butane in BrÃ,nsted Acidic Zeolites. ACS Catalysis, 2017, 7, 2685-2697.	5.5	42
59	Understanding gas adsorption in MOF-5/graphene oxide composite materials. Physical Chemistry Chemical Physics, 2017, 19, 11639-11644.	1.3	24
60	Atomistic Understanding of Zeolite Nanosheets for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 11273-11280.	1.5	60
61	Effects of Pore and Cage Topology on the Thermodynamics of <i>n</i> -Alkane Adsorption at BrÄ,nsted Protons in Zeolites at High Temperature. Journal of Physical Chemistry C, 2017, 121, 1618-1638.	1.5	17
62	Investigating the Potential of Singleâ€Walled Aluminosilicate Nanotubes in Water Desalination. ChemPhysChem, 2017, 18, 179-183.	1.0	26
63	Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands. Nature Communications, 2016, 7, 11503.	5.8	48
64	Investigating polarization effects of CO2 adsorption in MgMOF-74. Journal of Computational Science, 2016, 15, 86-94.	1.5	25
65	Force Field Development from Periodic Density Functional Theory Calculations for Gas Separation Applications Using Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 12590-12604.	1.5	95
66	High-throughput computational screening of nanoporous adsorbents for CO ₂ capture from natural gas. Molecular Systems Design and Engineering, 2016, 1, 175-188.	1.7	54
67	Assessing the Surface Area of Porous Solids: Limitations, Probe Molecules, and Methods. Langmuir, 2016, 32, 12664-12675.	1.6	33
68	Multilayer Nanoporous Graphene Membranes for Water Desalination. Nano Letters, 2016, 16, 1027-1033.	4.5	331
69	Effects of Zeolite Structural Confinement on Adsorption Thermodynamics and Reaction Kinetics for Monomolecular Cracking and Dehydrogenation of <i>n</i> Butane. Journal of the American Chemical Society, 2016, 138, 4739-4756.	6.6	72
70	Nanoporous Materials Can Tune the Critical Point of a Pure Substance. Angewandte Chemie - International Edition, 2015, 54, 14349-14352.	7.2	16
71	Adsorption Thermodynamics and Intrinsic Activation Parameters for Monomolecular Cracking of <i>n</i> -Alkanes on BrĂ,nsted Acid Sites in Zeolites. Journal of Physical Chemistry C, 2015, 119, 10427-10438.	1.5	48
72	Water adsorption in metal–organic frameworks with openâ€metal sites. AICHE Journal, 2015, 61, 677-687.	1.8	37

#	Article	IF	CITATIONS
73	Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chemistry of Materials, 2015, 27, 668-678.	3.2	248
74	Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6, 8335.	5.8	214
75	Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51, 14921-14924.	2.2	127
76	Metal–Organic Frameworks in Adsorption-Driven Heat Pumps: The Potential of Alcohols as Working Fluids. Langmuir, 2015, 31, 12783-12796.	1.6	123
77	Computational screening of porous metalâ€organic frameworks and zeolites for the removal of SO ₂ and NO _x from flue gases. AICHE Journal, 2014, 60, 2314-2323.	1.8	112
78	Design of a Metal–Organic Framework with Enhanced Back Bonding for Separation of N ₂ and CH ₄ . Journal of the American Chemical Society, 2014, 136, 698-704.	6.6	157
79	A hybrid absorption–adsorption method to efficiently capture carbon. Nature Communications, 2014, 5, 5147.	5.8	163
80	Optimizing nanoporous materials for gas storage. Physical Chemistry Chemical Physics, 2014, 16, 5499.	1.3	76
81	Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations. Journal of Physical Chemistry C, 2014, 118, 2693-2701.	1.5	23
82	Evaluating different classes of porous materials for carbon capture. Energy and Environmental Science, 2014, 7, 4132-4146.	15.6	186
83	CO ₂ Adsorption in Fe ₂ (dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations. Journal of Physical Chemistry C, 2014, 118, 12230-12240.	1.5	45
84	Force-Field Development from Electronic Structure Calculations with Periodic Boundary Conditions: Applications to Gaseous Adsorption and Transport in Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2014, 10, 1477-1488.	2.3	121
85	Reversible CO Binding Enables Tunable CO/H ₂ and CO/N ₂ Separations in Metal–Organic Frameworks with Exposed Divalent Metal Cations. Journal of the American Chemical Society, 2014, 136, 10752-10761.	6.6	210
86	Methane storage capabilities of diamond analogues. Physical Chemistry Chemical Physics, 2013, 15, 20937.	1.3	10
87	Evaluating mixture adsorption models using molecular simulation. AICHE Journal, 2013, 59, 3054-3064.	1.8	31
88	New materials for methane capture from dilute and medium-concentration sources. Nature Communications, 2013, 4, 1694.	5.8	111
89	Understanding CO ₂ Dynamics in Metal–Organic Frameworks with Open Metal Sites. Angewandte Chemie - International Edition, 2013, 52, 4410-4413.	7.2	160
90	Large-Scale Screening of Zeolite Structures for CO ₂ Membrane Separations. Journal of the American Chemical Society, 2013, 135, 7545-7552.	6.6	105

#	Article	IF	CITATIONS
91	The Mechanism of Carbon Dioxide Adsorption in an Alkylamine-Functionalized Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 7402-7405.	6.6	208
92	Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules. Journal of Physical Chemistry C, 2013, 117, 12159-12167.	1.5	64
93	Innenrücktitelbild: Understanding CO2Dynamics in Metal-Organic Frameworks with Open Metal Sites (Angew. Chem. 16/2013). Angewandte Chemie, 2013, 125, 4589-4589.	1.6	Ο
94	Predicting Large CO ₂ Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 2012, 134, 18940-18943.	6.6	129
95	Ab initio carbon capture in open-site metal–organic frameworks. Nature Chemistry, 2012, 4, 810-816.	6.6	310
96	Similarityâ€Driven Discovery of Zeolite Materials for Adsorptionâ€Based Separations. ChemPhysChem, 2012, 13, 3595-3597.	1.0	43
97	In silico screening of carbon-capture materials. Nature Materials, 2012, 11, 633-641.	13.3	497
98	Large-Scale Computational Screening of Zeolites for Ethane/Ethene Separation. Langmuir, 2012, 28, 11914-11919.	1.6	90