Sanjib Gogoi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3746410/publications.pdf

Version: 2024-02-01

471509 434195 1,044 39 17 31 citations h-index g-index papers 40 40 40 1174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Advances in Metalâ€Catalyzed Câ^'H Bond Functionalization Reactions of Sulfoxonium Ylides. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	23
2	Synthesis of quaternary carbon-centered indolo[1,2- <i>a</i>]quinazolinones and indazolo[1,2- <i>a</i>]indazolo[1,2- <i)a< i="">]indazolones <i>via</i> Câ€"H functionalization. Chemical Communications, 2021, 57, 1388-1391.</i)a<>	4.1	13
3	Ru(<scp>ii</scp>)-Catalyzed cascade decarbonylative annulation and dehydrogenative alkenylation reactions: synthesis of phthalides. Organic and Biomolecular Chemistry, 2021, 19, 2997-3003.	2.8	5
4	Pd(<scp>ii</scp>)-Catalyzed regioselective functionalization of antipyrines: synthesis of pyrazolono-maleimides and pyrazolono-quinones. Organic and Biomolecular Chemistry, 2021, 19, 5333-5341.	2.8	1
5	Pd(<scp>ii</scp>)-Catalyzed alkyne annulation through allylic isomerization: synthesis of spiro-cyclopentadiene pyrazolones. Chemical Communications, 2021, 57, 6027-6030.	4.1	3
6	Recent advances in decarbonylative annulation reactions. Organic and Biomolecular Chemistry, 2021, 19, 8853-8873.	2.8	5
7	Novel Potent Dopamine–Norepinephrine and Triple Reuptake Uptake Inhibitors Based on Asymmetric Pyran Template and Their Molecular Interactions with Monoamine Transporters. ACS Chemical Neuroscience, 2021, 12, 1406-1418.	3.5	3
8	Ruthenium(<scp>ii</scp>)-catalyzed decarbonylative and decarboxylative coupling of isatoic anhydrides with salicylaldehydes: access to aryl 2-aminobenzoates. Organic and Biomolecular Chemistry, 2021, 19, 2725-2730.	2.8	2
9	Palladium(ii)-catalyzed vinylic geminal double C–H activation and alkyne annulation reaction: synthesis of pentafulvenes. Chemical Communications, 2020, 56, 1133-1136.	4.1	13
10	Recent Advances in Ruthenium(II)â€Catalyzed Câ^'H Bond Activation and Alkyne Annulation Reactions. Advanced Synthesis and Catalysis, 2019, 361, 654-672.	4.3	183
11	Ruthenium(II)-Catalyzed Oxidative Double C–H Activation and Annulation Reaction: Synthesis of Indolo[2,1- <i>>a</i>) isoquinolines. Organic Letters, 2019, 21, 7878-7882.	4.6	29
12	Pd(II)-Catalyzed Synthesis of Alkylidene Phthalides via a Decarbonylative Annulation Reaction. Organic Letters, 2019, 21, 2768-2771.	4.6	20
13	Ru(II)-Catalyzed C–H Activation and Annulation Reaction via Carbon–Carbon Triple Bond Cleavage. Organic Letters, 2018, 20, 2297-2300.	4.6	38
14	Ru ^{II} â€Catalyzed Regioselective Debrominative Annulation Reaction of Salicylaldehydes and Propargyl Bromide: Synthesis of 2â€Methylchromones. Asian Journal of Organic Chemistry, 2018, 7, 918-921.	2.7	10
15	Ruthenium(II)â€Catalyzed Dearomatized Câ^'H Activation and Annulation Reaction of Vinylnaphthols with Alkynes: Access to Spiroâ€Pentacyclic Naphthalenones. Chemistry - A European Journal, 2018, 24, 10196-10200.	3.3	24
16	Isocoumarins: General Aspects and Recent Advances in their Synthesis. Advanced Synthesis and Catalysis, 2018, 360, 2063-2075.	4.3	76
17	Ruthenium(II)â€Catalyzed Synthesis of Spirobenzofuranones by a Decarbonylative Annulation Reaction. Angewandte Chemie, 2018, 130, 465-469.	2.0	10
18	Ruthenium(II)â€Catalyzed Synthesis of Spirobenzofuranones by a Decarbonylative Annulation Reaction. Angewandte Chemie - International Edition, 2018, 57, 456-460.	13.8	51

#	Article	IF	CITATIONS
19	Ru(II)-Catalyzed and Ligand-Controlled Câ€"H Activation and Annulation via 1,2-Phenyl Shift: Synthesis of Quaternary Carbon-Centered Pyrimidoindolones. Organic Letters, 2018, 20, 3753-3757.	4.6	18
20	Ru(ii)-Catalyzed annulation of benzamidines and alkynes by Câ€"H/Nâ€"H activation: a facile synthesis of 1-aminoisoquinolines. Organic and Biomolecular Chemistry, 2017, 15, 3491-3498.	2.8	28
21	Directing group assisted copper-mediated aroylation of phenols using 2-bromoacetophenones. Chemical Communications, 2017, 53, 9133-9135.	4.1	11
22	The amide C–N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C–H activation and annulation reactions: access to 8-amido isocoumarins. Chemical Communications, 2016, 52, 9809-9812.	4.1	44
23	Ru(<scp>ii</scp>)-Catalyzed C–H activation and annulation of salicylaldehydes with monosubstituted and disubstituted alkynes. Chemical Communications, 2016, 52, 13004-13007.	4.1	56
24	Copperâ€Catalyzed C–N, C–O Coupling Reaction of Arylglyoxylic Acids with Isatins. Advanced Synthesis and Catalysis, 2016, 358, 3046-3049.	4.3	17
25	Ruthenium-catalyzed decarbonylative addition reaction of anhydrides with alkynes: a facile synthesis of isocoumarins and \hat{l}_{\pm} -pyrones. Chemical Communications, 2015, 51, 9972-9974.	4.1	44
26	Palladium mediated regioselective intramolecular Heck reaction: synthesis of 1,3,4-trisubstituted pyrazolo[3,4-b]pyridines, 3H-pyrazolo[3,4-c]isoquinolines and 3H-pyrazolo[4,3-f][1,7]naphthyridines. RSC Advances, 2015, 5, 21099-21102.	3.6	13
27	Cascade imination, Buchwald–Hartwig cross coupling and cycloaddition reaction: synthesis of pyrido[2,3-d]pyrimidines. RSC Advances, 2015, 5, 23210-23212.	3.6	18
28	Carbon–Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5- <i>a</i>)pyrimidines. Journal of Organic Chemistry, 2015, 80, 6885-6889.	3.2	41
29	Palladiumâ€Catalyzed Oneâ€Pot Sonogashira Coupling, <i>exo</i> â€ <i>dig</i> Cyclization and Hydride Transfer Reaction: Synthesis of Pyridineâ€Substituted Pyrroles. Advanced Synthesis and Catalysis, 2015, 357, 1187-1192.	4.3	20
30	Ruthenium(II)-Catalyzed Alkene C–H Bond Functionalization on Cinnamic Acids: A Facile Synthesis of Versatile α-Pyrones. Organic Letters, 2015, 17, 5264-5267.	4.6	51
31	Synthesis of steroidal and nonsteroidal vicinal heterocyclic alcohols, N-(1-cycloalkenyl)heterocycles and their antibacterial studies. Steroids, 2014, 84, 36-45.	1.8	17
32	Efficient synthesis of isoquinolines and pyridines via copper(i)-catalyzed multi-component reaction. RSC Advances, 2014, 4, 14013.	3.6	36
33	Microwave-assisted palladium mediated efficient synthesis of pyrazolo[3,4-b]pyridines, pyrazolo[3,4-b]quinolines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a]quinazolines. RSC Advances, 2014, 4, 24001-24006.	3.6	56
34	An efficient route for annulation of pyrimidines to steroids and non-steroids via a base catalyzed one-pot three component reaction. Steroids, 2014, 88, 1-6.	1.8	11
35	A Rapid and Convenient Microwave-Promoted Synthesis of 3,5-Disubstituted 2-Chloropyridines and Their Conversion into Tetrazolo[1,5-a]pyridines. Synthesis, 2013, 45, 219-224.	2.3	4
36	Simple Ultrasound-Assisted Synthesis of 3,4-Dihydropyrimidin-2(1H)-one and 3,4-Dihydropyrimidine-2(1H)-thione-Fused Steroidal Derivatives by a Three-Component Reaction. Synthesis, 2012, 44, 2614-2622.	2.3	15

#	Article	IF	CITATIONS
37	Structural Exploration of (3 <i>S</i> ,6 <i>S</i>)â€6â€Benzhydrylâ€ <i>N</i> ê€benzyltetrahydroâ€2 <i>H</i> êfpyranâ€3â€amine Analogues Identification of Potent Triple Monoamine Reuptake Inhibitors as Potential Antidepressants. ChemMedChem, 2012, 7, 2093-2100.	: 3.2	9
38	An improved asymmetric synthetic route to a novel triple uptake inhibitor antidepressant (2S,4R,5R)-2-benzhydryl-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol (D-142). Tetrahedron: Asymmetry, 2011, 22, 1081-1086.	1.8	9
39	The novel trisubstituted pyran derivative D-142 has triple monoamine reuptake inhibitory activity and exerts potent antidepressant-like activity in rodents. European Journal of Pharmacology, 2011, 671, 39-44.	3.5	17