Pico Caroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3746278/publications.pdf

Version: 2024-02-01

45 papers 8,945 citations

36 h-index 214800 47 g-index

48 all docs

48 docs citations

48 times ranked

10834 citing authors

#	Article	IF	CITATIONS
1	Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell, 1995, 83, 269-278.	28.9	676
2	Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature, 2013, 504, 272-276.	27.8	599
3	Early and Selective Loss of Neuromuscular Synapse Subtypes with Low Sprouting Competence in Motoneuron Diseases. Journal of Neuroscience, 2000, 20, 2534-2542.	3.6	579
4	Gap43, Marcks, and Cap23 Modulate Pi(4,5)p2 at Plasmalemmal Rafts, and Regulate Cell Cortex Actin Dynamics through a Common Mechanism. Journal of Cell Biology, 2000, 149, 1455-1472.	5.2	550
5	Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nature Neuroscience, 2006, 9, 408-419.	14.8	540
6	A role for motoneuron subtype–selective ER stress in disease manifestations of FALS mice. Nature Neuroscience, 2009, 12, 627-636.	14.8	512
7	Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration. Neuron, 2011, 71, 35-48.	8.1	465
8	Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex. Neuron, 2006, 49, 861-875.	8.1	376
9	Accumulation of SOD1 Mutants in Postnatal Motoneurons Does Not Cause Motoneuron Pathology or Motoneuron Disease. Journal of Neuroscience, 2002, 22, 4825-4832.	3.6	364
10	Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nature Neuroscience, 2001, 4, 38-43.	14.8	343
11	Overexpression of growth-associated proteins in the neurons of adult transgenic mice. Journal of Neuroscience Methods, 1997, 71, 3-9.	2.5	318
12	Shared and Unique Roles of Cap23 and Gap43 in Actin Regulation, Neurite Outgrowth, and Anatomical Plasticity. Journal of Cell Biology, 2000, 149, 1443-1454.	5.2	249
13	Learning-related feedforward inhibitory connectivity growth required for memory precision. Nature, 2011, 473, 514-518.	27.8	244
14	Neuroprotection through Excitability and mTOR Required in ALS Motoneurons to Delay Disease and Extend Survival. Neuron, 2013, 80, 80-96.	8.1	233
15	Mechanisms of axon degeneration: From development to disease. Progress in Neurobiology, 2007, 83, 174-191.	5.7	220
16	AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nature Neuroscience, 2003, 6, 491-500.	14.8	210
17	Diverse Modes of Axon Elaboration in the Developing Neocortex. PLoS Biology, 2005, 3, e272.	5.6	204
18	Functional and structural underpinnings of neuronal assembly formation in learning. Nature Neuroscience, 2016, 19, 1553-1562.	14.8	193

#	Article	IF	Citations
19	Wnt Signaling Mediates Experience-Related Regulation of Synapse Numbers and Mossy Fiber Connectivities in the Adult Hippocampus. Neuron, 2009, 62, 510-525.	8.1	169
20	CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science, 2016, 351, 1199-1203.	12.6	146
21	Long-Term Rearrangements of Hippocampal Mossy Fiber Terminal Connectivity in the Adult Regulated by Experience. Neuron, 2006, 50, 749-763.	8.1	143
22	Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nature Neuroscience, 2011, 14, 495-504.	14.8	142
23	Early- and Late-Born Parvalbumin Basket Cell Subpopulations Exhibiting Distinct Regulation and Roles in Learning. Neuron, 2015, 85, 770-786.	8.1	131
24	Intrinsic neuronal determinants that promotes axonal sprouting and elongation. BioEssays, 1997, 19, 767-775.	2.5	128
25	Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell, 2019, 178, 1387-1402.e14.	28.9	118
26	Goal-oriented searching mediated by ventral hippocampus early in trial-and-error learning. Nature Neuroscience, 2012, 15, 1563-1571.	14.8	114
27	An Intrinsic Distinction in Neuromuscular Junction Assembly and Maintenance in Different Skeletal Muscles. Neuron, 2002, 34, 357-370.	8.1	106
28	PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nature Neuroscience, 2016, 19, 454-464.	14.8	99
29	From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. Neuron, 2015, 85, 901-910.	8.1	96
30	Structural plasticity of axon terminals in the adult. Current Opinion in Neurobiology, 2007, 17, 516-524.	4.2	85
31	Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO Journal, 2006, 25, 4050-4060.	7.8	82
32	The Motility-Associated Proteins GAP-43, MARCKS, and CAP-23 Share Unique Targeting and Surface Activity-Inducing Properties. Experimental Cell Research, 1997, 236, 103-116.	2.6	79
33	Characterization of BASP1â€mediated neurite outgrowth. Journal of Neuroscience Research, 2008, 86, 2201-2213.	2.9	76
34	Intrinsic Neuronal Determinants Locally Regulate Extrasynaptic and Synaptic Growth at the Adult Neuromuscular Junction. Journal of Cell Biology, 1997, 136, 679-692.	5.2	75
35	Infralimbic cortex is required for learning alternatives to prelimbic promoted associations through reciprocal connectivity. Nature Communications, 2018, 9, 2727.	12.8	59
36	EphA4 Signaling in Juveniles Establishes Topographic Specificity of Structural Plasticity in the Hippocampus. Neuron, 2010, 65, 627-642.	8.1	56

PICO CARONI

#	Article	IF	CITATION
37	Inhibitory microcircuit modules in hippocampal learning. Current Opinion in Neurobiology, 2015, 35, 66-73.	4.2	39
38	Assembly, plasticity and selective vulnerability to disease of mouse neuromuscular junctions. Journal of Neurocytology, 2003, 32, 849-862.	1.5	30
39	Time units for learning involving maintenance of system-wide cFos expression in neuronal assemblies. Nature Communications, 2018, 9, 4122.	12.8	28
40	Regulation of Parvalbumin Basket cell plasticity in rule learning. Biochemical and Biophysical Research Communications, 2015, 460, 100-103.	2.1	24
41	Parvalbumin Interneuron Plasticity for Consolidation of Reinforced Learning. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 25-35.	1.1	14
42	Absence of familiarity triggers hallmarks of autism in mouse model through aberrant tail-of-striatum and prelimbic cortex signaling. Neuron, 2022, 110, 1468-1482.e5.	8.1	13
43	m6A-epitranscriptome modulates memory strength. Cell Research, 2019, 29, 4-5.	12.0	7
44	Managing Neuronal Ensembles: Somatostatin Interneuron Subpopulations Shape and Protect Cortical Neuronal Ensembles for Learning. Neuron, 2019, 102, 6-8.	8.1	2
45	Strategy updating mediated by specific retrosplenial-parafascicular-basal ganglia networks. Current Biology, 2022, 32, 3477-3492.e5.	3.9	2