
Anthony B Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3745869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustainable Ammonia Synthesis from Nitrogen and Water by Oneâ€Step Plasma Catalysis. Energy and Environmental Materials, 2023, 6, .	7.3	20
2	Detonation of a nitromethane-based energetic mixture driven by electrical wire explosion. Journal Physics D: Applied Physics, 2022, 55, 05LT01.	1.3	16
3	Influence of Groove on Metal Vapour Behavior and Arc Characteristics in TIG Welding of High Manganese Stainless Steels. Plasma Chemistry and Plasma Processing, 2022, 42, 229-245.	1.1	1
4	Pulsed Townsend measurement of electron swarm parameters in C4F7N–CO2 and C4F7N–N2 mixtures as eco-friendly insulation gas. Journal of Applied Physics, 2022, 131, .	1.1	13
5	Numerical Analysis of Metal Transfer Process in Plasma MIG Welding. Metals, 2022, 12, 326.	1.0	5
6	Foundations of plasma catalysis for environmental applications. Plasma Sources Science and Technology, 2022, 31, 053002.	1.3	28
7	Altering the Supply of Shielding Gases to Fabricate Distinct Geometry in GMA Additive Manufacturing. Applied Sciences (Switzerland), 2022, 12, 3679.	1.3	8
8	Modeling of argon–steam thermal plasma flow for abatement of fluorinated compounds. Journal Physics D: Applied Physics, 2022, 55, 375201.	1.3	4
9	Experimental study on the effect of argon shielding gas on the suppression of nitrogen arc anode ablation. Journal Physics D: Applied Physics, 2022, 55, 375202.	1.3	1
10	The 2022 Plasma Roadmap: low temperature plasma science and technology. Journal Physics D: Applied Physics, 2022, 55, 373001.	1.3	139
11	Macrosegregation in the Weld Pool in Metal Inert-Gas Welding of Aluminium. Journal of Manufacturing Processes, 2021, 61, 111-127.	2.8	5
12	Application of Plasma-Printed Paper-Based SERS Substrate for Cocaine Detection. Sensors, 2021, 21, 810.	2.1	23
13	Toward a theory of ball lightning occurring in houses and aircraft. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 214, 105532.	0.6	6
14	Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch. Plasma Science and Technology, 2021, 23, 064009.	0.7	4
15	Numerical Investigation of Heat Transfer During Submerged Arc Welding Phenomena by Coupled DEM-ISPH Simulation. International Journal of Heat and Mass Transfer, 2021, 171, 121062.	2.5	19
16	The case for digital twins in metal additive manufacturing. JPhys Materials, 2021, 4, 040401.	1.8	33
17	Dominant Heat Transfer Mechanisms in the GTAW Plasma Arc Column. Plasma Chemistry and Plasma Processing, 2021, 41, 1497-1515.	1.1	8
18	A novel anode structure for diffuse arc anode attachment. Journal Physics D: Applied Physics, 2021, 54, 36LT01.	1.3	5

#	Article	IF	CITATIONS
19	Electrical wire explosion as a source of underwater shock waves. Journal Physics D: Applied Physics, 2021, 54, 403001.	1.3	24
20	Effects of alkaline elements on the metal transfer behavior in metal cored arc welding. Journal of Manufacturing Processes, 2021, 68, 1448-1457.	2.8	5
21	Arc dynamics in a vortex-stabilized non-transferred plasma torch with a tangential gas feed. Journal Physics D: Applied Physics, 2021, 54, 495501.	1.3	1
22	Multiscale simulation of rapid solidification of an aluminium–silicon alloy under additive manufacturing conditions. Additive Manufacturing, 2021, 48, 102353.	1.7	5
23	Towards developing multiscale-multiphysics models and their surrogates for digital twins of metal additive manufacturing. Additive Manufacturing, 2021, 46, 102089.	1.7	34
24	Low-pressure plasma-induced physical vapor deposition of advanced thermal barrier coatings: Microstructures, modelling and mechanisms. Materials Today Physics, 2021, 21, 100481.	2.9	18
25	Modelling and measurements of gas tungsten arc welding in argon–helium mixtures with metal vapour. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 767-783.	1.3	12
26	Temperature-independent, nonoxidative methane conversion in nanosecond repetitively pulsed DBD plasma. Sustainable Energy and Fuels, 2021, 5, 787-800.	2.5	24
27	Generalized representation of arc shape, arc column characteristics and arc-weld pool interactions for DC electric arcs burning in monoatomic gases. Journal Physics D: Applied Physics, 2021, 54, 055001.	1.3	3
28	Temporal evolution of electron energy distribution function and its correlation with hydrogen radical generation in atmospheric-pressure methane needle–plane discharge plasmas. Journal Physics D: Applied Physics, 2021, 54, 095202.	1.3	12
29	Numerical investigation for dominant factors in slag transfer and deposition process during metal active gas welding using incompressible smoothed particle hydrodynamics method. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2021, 39, 277-290.	0.1	1
30	Chemical Non-equilibrium Simulation of Anode Attachment of an Argon Transferred Arc. Plasma Chemistry and Plasma Processing, 2020, 40, 261-282.	1.1	16
31	Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress. Additive Manufacturing, 2020, 31, 100909.	1.7	66
32	Numerical study of the metal vapour transport in tungsten inert-gas welding in argon for stainless steel. Applied Mathematical Modelling, 2020, 79, 713-728.	2.2	20
33	Model-based parameter optimization for arc welding process simulation. Applied Mathematical Modelling, 2020, 81, 386-400.	2.2	21
34	Thermal decomposition characteristics and kinetic analysis of C ₄ F ₇ N/CO ₂ gas mixture. Journal Physics D: Applied Physics, 2020, 53, 055502.	1.3	19
35	Calculation of two-temperature plasma composition: II. Consideration of condensed phases. Journal Physics D: Applied Physics, 2020, 53, 065203.	1.3	7
36	Calculation of two-temperature plasma composition: I. Mass action law methods and extremum searching methods. Journal Physics D: Applied Physics, 2020, 53, 065202.	1.3	7

#	Article	IF	CITATIONS
37	Effects of wire materials on radiative heat flux and spectral characteristics of a capillary discharge plasma jet. Journal Physics D: Applied Physics, 2020, 53, 075204.	1.3	5
38	Numerical study of the effects and transport mechanisms of iron vapour in tungsten inert-gas welding in argon. Journal Physics D: Applied Physics, 2020, 53, 044004.	1.3	15
39	Identifying Surface Reaction Intermediates in Plasma Catalytic Ammonia Synthesis. ACS Catalysis, 2020, 10, 14763-14774.	5.5	86
40	Investigation of the influence of buoyancy on gas convection of a horizontal xenon short arc lamp through 3D numerical simulation. Journal Physics D: Applied Physics, 2020, 53, 385205.	1.3	1
41	Investigation of transient metal vapour transport processes in helium arc welding by imaging spectroscopy. Journal Physics D: Applied Physics, 2020, 53, 425202.	1.3	14
42	Special issue on thermal-plasma–material interactions. Journal Physics D: Applied Physics, 2020, 53, 430201.	1.3	0
43	Three-dimensional chemical non-equilibrium simulation of an argon transferred arc with cross-flow. Journal Physics D: Applied Physics, 2020, 53, 305202.	1.3	8
44	Influence of Electrode Energy Balance on Gas Convective Pattern of a High-Pressure Xenon Short Arc Lamp. Plasma Chemistry and Plasma Processing, 2020, 40, 819-837.	1.1	4
45	Fundamental physicochemical properties of SF ₆ -alternative gases: a review of recent progress. Journal Physics D: Applied Physics, 2020, 53, 173001.	1.3	55
46	Modelling of inhomogeneous mixing of plasma species in argon–steam arc discharge for broad range of operating conditions. European Physical Journal D, 2020, 74, 1.	0.6	6
47	Numerical Simulation of the Behavior of Hydrogen Source in a Novel Welding Process to Reduce Diffusible Hydrogen. Materials, 2020, 13, 1619.	1.3	3
48	The 2020 plasma catalysis roadmap. Journal Physics D: Applied Physics, 2020, 53, 443001.	1.3	362
49	Chemical nonequilibrium modelling of a free-burning nitrogen arc. Journal Physics D: Applied Physics, 2020, 53, 505205.	1.3	8
50	Cathode spot formation possibly explained by cathode electron emission from impact of excited state atoms. Journal Physics D: Applied Physics, 2019, 52, 444004.	1.3	4
51	Multilayer weak shocks generated by restrike during underwater electrical explosion of Cu wires. Applied Physics Letters, 2019, 115, .	1.5	17
52	Numerical Simulation of Gas Flow in a Novel Torch for Reducing Diffusible Hydrogen. Journal of Smart Processing, 2019, 8, 219-224.	0.0	1
53	Investigation of the bilayer region of metal vapor in a helium tungsten inert gas arc plasma on stainless steel by imaging spectroscopy. Journal Physics D: Applied Physics, 2019, 52, 354003.	1.3	23
54	Modeling of a xenon short arc lamp considering the behavior of tungsten vapour evaporated from electrodes. Journal Physics D: Applied Physics, 2019, 52, 334001.	1.3	11

#	Article	IF	CITATIONS
55	Experimental Study of CO2 Decomposition in a DC Micro-slit Sustained Glow Discharge Reactor. Plasma Chemistry and Plasma Processing, 2019, 39, 825-844.	1.1	9
56	Understanding the nanoparticle formation during electrical wire explosion using a modified moment model. Plasma Sources Science and Technology, 2019, 28, 085010.	1.3	20
57	Numerical simulation of the flow characteristics inside a novel plasma spray torch. Journal Physics D: Applied Physics, 2019, 52, 335203.	1.3	27
58	Direct plasma printing of nano-gold from an inorganic precursor. Journal of Materials Chemistry C, 2019, 7, 6369-6374.	2.7	27
59	Heat Source Characteristics of Ternary-Gas-Shielded Tandem Narrow-Gap GMAW. Materials, 2019, 12, 1397.	1.3	11
60	A unified model for coupling mesoscopic dynamics of keyhole, metal vapor, arc plasma, and weld pool in laser-arc hybrid welding. Journal of Manufacturing Processes, 2019, 41, 119-134.	2.8	22
61	Decomposition mechanism and kinetics of iso-C4 perfluoronitrile (C4F7N) plasmas. Journal of Applied Physics, 2019, 126, .	1.1	20
62	Generation of Long Laminar Plasma Jets: Experimental and Numerical Analyses. Plasma Chemistry and Plasma Processing, 2019, 39, 377-394.	1.1	20
63	Influence of Thermodynamic and Transport Properties of Gas on Heat Load to Bulb of Xenon Short Arc Lamp. Journal of Smart Processing, 2019, 9, 148-155.	0.0	0
64	Properties of C ₄ F ₇ N–CO ₂ thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients. Journal Physics D: Applied Physics, 2018, 51, 155206.	1.3	59
65	SF ₆ -alternative gases for application in gas-insulated switchgear. Journal Physics D: Applied Physics, 2018, 51, 153001.	1.3	143
66	Foundations of High-Pressure Thermal Plasmas. Plasma Sources Science and Technology, 2018, 27, 063001.	1.3	56
67	Modeling of inhomogeneous mixing of plasma species in argon–steam arc discharge. Journal Physics D: Applied Physics, 2018, 51, 045202.	1.3	6
68	Plasma Catalysis as an Alternative Route for Ammonia Production: Status, Mechanisms, and Prospects for Progress. ACS Sustainable Chemistry and Engineering, 2018, 6, 15-31.	3.2	144
69	Numerical simulation of fume formation process in GMA welding. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 1331-1339.	1.3	18
70	Cold plasma treatment for cotton seed germination improvement. Scientific Reports, 2018, 8, 14372.	1.6	82
71	Cold plasma effect on the proteome of Pseudomonas aeruginosa – Role for bacterioferritin. PLoS ONE, 2018, 13, e0206530.	1.1	6
72	Chemical kinetics analysis of two C5-perfluorinated ketone (C5 PFK) thermal decomposition products: C ₄ F ₇ O and C ₃ F ₄ O. Journal Physics D: Applied Physics, 2018, 51, 435202.	1.3	12

#	Article	IF	CITATIONS
73	Controlling the adsorption behavior of hydrogen at the interface of polycrystalline CVD graphene. International Journal of Hydrogen Energy, 2018, 43, 18735-18744.	3.8	7
74	Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. Journal of Membrane Science, 2018, 564, 382-393.	4.1	43
75	Breakdown and current-voltage characteristics of DC micro-slit discharges in carbon dioxide. Plasma Sources Science and Technology, 2018, 27, 075011.	1.3	5
76	Heat Transfer in Arc Welding. , 2018, , 2657-2727.		4
77	Influence of helium content on a ternary-gas-shielded GMAW process. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 973-984.	1.3	11
78	A computational model of gas tungsten arc welding of stainless steel: the importance of considering the different metal vapours simultaneously. Journal Physics D: Applied Physics, 2018, 51, 395202.	1.3	24
79	Chemical kinetic modeling and experimental study of SF ₆ decomposition byproducts in 50 Hz ac point-plane corona discharges. Journal Physics D: Applied Physics, 2018, 51, 295202.	1.3	12
80	A desktop computer model of the arc, weld pool and workpiece in metal inert gas welding. Applied Mathematical Modelling, 2017, 44, 91-106.	2.2	19
81	Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature Communications, 2017, 8, 14217.	5.8	122
82	Aiming for Modeling-Assisted Tailored Designs for Additive Manufacturing. Minerals, Metals and Materials Series, 2017, , 91-102.	0.3	4
83	Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas. Journal Physics D: Applied Physics, 2017, 50, 125202.	1.3	5
84	Numerical analysis of direct-current microdischarge for space propulsion applications using the particle-in-cell/Monte Carlo collision (PIC/MCC) method. Journal Physics D: Applied Physics, 2017, 50, 165203.	1.3	13
85	A collisional-radiative model of iron vapour in a thermal arc plasma. Journal Physics D: Applied Physics, 2017, 50, 22LT02.	1.3	9
86	A Coupled Chemical Kinetic and Nucleation Model of Fume Formation in Metal–Inert-Gas/Metal–Active-Gas Welding. Plasma Chemistry and Plasma Processing, 2017, 37, 805-823.	1.1	9
87	Kinetic modelling of NH ₃ production in N ₂ –H ₂ non-equilibrium atmospheric-pressure plasma catalysis. Journal Physics D: Applied Physics, 2017, 50, 154005.	1.3	88
88	Hydrogen Plasma Processing of Iron Ore. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1561-1594.	1.0	50
89	Numerical Simulation of Nonequilibrium Species Diffusion in a Low-Power Nitrogen–Hydrogen Arcjet Thruster. Plasma Chemistry and Plasma Processing, 2017, 37, 877-895.	1.1	17
90	Prediction of arc, weld pool and weld properties with a desktop computer model of metal–inert-gas welding. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 623-633.	1.3	11

#	Article	IF	CITATIONS
91	Visualization and mechanisms of splashing erosion of electrodes in a DC air arc. Journal Physics D: Applied Physics, 2017, 50, 47LT01.	1.3	29
92	Calculation of thermodynamic properties and transport coefficients of C5F10O-CO2 thermal plasmas. Journal of Applied Physics, 2017, 122, .	1.1	35
93	Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel. Journal Physics D: Applied Physics, 2017, 50, 43LT03.	1.3	15
94	The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal Physics D: Applied Physics, 2017, 50, 323001.	1.3	710
95	Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Scientific Reports, 2017, 7, 5601.	1.6	48
96	Evaluation of SF ₆ -alternative gas C5-PFK based on arc extinguishing performance and electric strength. Journal Physics D: Applied Physics, 2017, 50, 385202.	1.3	54
97	Characterization of heat treatment-induced pore structure changes in cold-sprayed titanium. Materials Characterization, 2017, 132, 69-75.	1.9	40
98	Farewell to Stan Vepřek, Founding Editor of Plasma Chemistry and Plasma Processing. Plasma Chemistry and Plasma Processing, 2017, 37, 1-4.	1.1	7
99	Calculation of thermodynamic properties and transport coefficients of CO ₂ –O ₂ –Cu mixtures. Journal Physics D: Applied Physics, 2017, 50, 345203.	1.3	9
100	Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model. Welding in the World, Le Soudage Dans Le Monde, 2017, 61, 197-207.	1.3	17
101	Modeling of Thermal Plasma Processes: The Importance of Twoâ€Way Plasmaâ€Surface Interactions. Plasma Processes and Polymers, 2017, 14, 1600177.	1.6	14
102	Heat Transfer in Arc Welding. , 2017, , 1-72.		3
103	Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Scientific Reports, 2016, 6, 38610.	1.6	435
104	Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge. Plasma Chemistry and Plasma Processing, 2016, 36, 917-940.	1.1	74
105	Investigation of mixing of plasma species in argon-water arc discharge. , 2016, , .		0
106	Boundary conditions at the ablative walls in two-temperature modelling of thermal plasmas with reactive working gas. Journal Physics D: Applied Physics, 2016, 49, 375202.	1.3	6
107	Theoretical study of the neutral decomposition of SF ₆ in the presence of H ₂ O and O ₂ in discharges in power equipment. Journal Physics D: Applied Physics, 2016, 49, 385203.	1.3	65
108	Study of the pitting effects during the pre-ignition plasma–propellant interaction process. Journal Physics D: Applied Physics, 2016, 49, 075201.	1.3	11

#	Article	IF	CITATIONS
109	Determination of the Dominant Species and Reactions in Non-equilibrium CO2 Thermal Plasmas with a Two-Temperature Chemical Kinetic Model. Plasma Chemistry and Plasma Processing, 2016, 36, 1301-1323.	1.1	8
110	Numerical simulation of GMAW process using Ar and an Ar–CO2 gas mixture. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 345-353.	1.3	72
111	Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF ₆ arc. Journal Physics D: Applied Physics, 2016, 49, 105502.	1.3	30
112	Calculated rate constants of the chemical reactions involving the main byproducts SO ₂ F, SOF ₂ , SO ₂ F ₂ of SF ₆ decomposition in power equipment. Journal Physics D: Applied Physics, 2016, 49, 155502.	1.3	82
113	Draft Genome Sequence of Pseudomonas aeruginosa ATCC 9027 (DSM 1128), an Important Rhamnolipid Surfactant Producer and Sterility Testing Strain. Genome Announcements, 2015, 3, .	0.8	22
114	Influence of plasma characteristics on nitrogen mixing into shielding gas in helium gas tungsten arc welding. Welding International, 2015, 29, 325-333.	0.3	0
115	Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications. Journal Physics D: Applied Physics, 2015, 48, 055201.	1.3	15
116	Interaction of a H2O/Ar Plasma Jet with Nitrogen Atmosphere: Effect of the Method for Calculating Thermophysical Properties of the Gas Mixture on the Flow Field. Plasma Chemistry and Plasma Processing, 2015, 35, 365-386.	1.1	4
117	Numerical analysis of fume formation mechanism in TIG welding. Welding International, 2015, 29, 165-172.	0.3	3
118	Nitrogen absorption phenomenon of GTA welding with nitrogen-mixed shielding gases: effect of plasma characteristics on nitrogen content in GTA welded metal. Welding International, 2015, 29, 262-269.	0.3	1
119	Special Issue on Perspectives on Thermal Plasma Research for Industrial Applications: Introduction. Plasma Chemistry and Plasma Processing, 2015, 35, 415-416.	1.1	0
120	Comparison of the transport properties of two-temperature argon plasmas calculated using different methods. Plasma Sources Science and Technology, 2015, 24, 035011.	1.3	11
121	A Perspective on Arc Welding Research: The Importance of the Arc, Unresolved Questions and Future Directions. Plasma Chemistry and Plasma Processing, 2015, 35, 471-489.	1.1	85
122	The effects of plasma treatment on bacterial biofilm formation on vertically-aligned carbon nanotube arrays. RSC Advances, 2015, 5, 5142-5148.	1.7	37
123	Two-temperature thermodynamic and transport properties of SF6–Cu plasmas. Journal Physics D: Applied Physics, 2015, 48, 415205.	1.3	7
124	Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa. Journal of Applied Physics, 2015, 117, .	1.1	18
125	Calculation and application of combined diffusion coefficients in thermal plasmas. Scientific Reports, 2015, 4, 4304.	1.6	29
126	Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine, PLoS ONE, 2015, 10, e0130373.	1.1	61

#	Article	IF	CITATIONS
127	Analysis of dynamic plasma behaviors in gas metal arc welding by imaging spectroscopy. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 118-125.	0.1	14
128	Reliability evaluation of Fowler-Milne method in a temperature measurement of Gas Tungsten Arc. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 42-48.	0.1	5
129	Prediction of the dielectric strength for c-C ₄ F ₈ mixtures with CF ₄ , CO ₂ , N ₂ , O ₂ and air by Boltzmann equation analysis. Journal Physics D: Applied Physics, 2014, 47, 425204.	1.3	27
130	Combined diffusion coefficients for a mixture of three ionized gases. Plasma Sources Science and Technology, 2014, 23, 065044.	1.3	12
131	Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with 50% O ₂ and 50% H ₂ from Boltzmann analysis for gas temperatures up to 3500 K at atmospheric pressure. Journal Physics D: Applied Physics, 2014, 47, 325203.	1.3	18
132	Experimental and theoretical study of internal fault arc in a closed container. Journal Physics D: Applied Physics, 2014, 47, 505204.	1.3	23
133	Calculation of combined diffusion coefficients in SF6-Cu mixtures. Physics of Plasmas, 2014, 21, 103506.	0.7	17
134	Atmospheric pressure plasmas: Infection control and bacterial responses. International Journal of Antimicrobial Agents, 2014, 43, 508-517.	1.1	208
135	Analysis of energy flow in gas metal arc welding processes through self-consistent three-dimensional process simulation. International Journal of Heat and Mass Transfer, 2014, 68, 215-223.	2.5	35
136	Two-Temperature Chemical-Nonequilibrium Modelling of a High-Velocity Argon Plasma Flow in a Low-Power Arcjet Thruster. Plasma Chemistry and Plasma Processing, 2014, 34, 559-577.	1.1	22
137	Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels. Journal Physics D: Applied Physics, 2014, 47, 465202.	1.3	31
138	Production of Ammonia by Heterogeneous Catalysis in a Packed-Bed Dielectric-Barrier Discharge: Influence of Argon Addition and Voltage. IEEE Transactions on Plasma Science, 2014, 42, 2338-2339.	0.6	47
139	Special Issue of Papers by Plenary and Topical Invited Lecturers at 21st International Symposium on Plasma Chemistry (ISPC 21), 4–9 August 2013, Cairns, Australia: Introduction. Plasma Chemistry and Plasma Processing, 2014, 34, 361-362.	1.1	1
140	In Gratitude to Steven Girshick. Plasma Chemistry and Plasma Processing, 2014, 34, 703-704.	1.1	0
141	Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. Journal Physics D: Applied Physics, 2014, 47, 295202.	1.3	46
142	Atmospheric gas plasma–induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Molecular Biology of the Cell, 2014, 25, 1523-1531.	0.9	166
143	Numerical analysis of Al vapour effects in gas metal arc welding of Al alloys. Science and Technology of Welding and Joining, 2014, 19, 361-368.	1.5	10
144	Modelling Lightning Initiation and Attachment to Aircraft. Journal of Physics: Conference Series, 2014, 550, 012002.	0.3	0

#	Article	IF	CITATIONS
145	Metal Vapour in Atmospheric-Pressure Arcs. IEEJ Transactions on Power and Energy, 2014, 134, 199-202.	0.1	2
146	Study of the dielectric breakdown properties of hot SF6–CF4 mixtures at 0.01–1.6 MPa. Journal of Applied Physics, 2013, 114, .	1.1	36
147	Effect of plasma heat source characteristics on nitrogen absorption in gas tungsten arc weld metal. Welding in the World, Le Soudage Dans Le Monde, 2013, 57, 925-932.	1.3	4
148	Influence of metal vapour on arc temperatures in gas–metal arc welding: convection versus radiation. Journal Physics D: Applied Physics, 2013, 46, 224004.	1.3	48
149	Numerical modelling of the nonequilibrium expansion process of argon plasma flow through a nozzle. Journal Physics D: Applied Physics, 2013, 46, 505205.	1.3	16
150	Thermal plasma properties for Ar–Cu, Ar–Fe and Ar–Al mixtures used in welding plasmas processes: II. Transport coefficients at atmospheric pressure. Journal Physics D: Applied Physics, 2013, 46, 415207.	1.3	38
151	Visualization of fume formation process in arc welding with numerical simulation. Surface and Coatings Technology, 2013, 228, S301-S305.	2.2	9
152	Low-voltage circuit breaker arcs—simulation and measurements. Journal Physics D: Applied Physics, 2013, 46, 273001.	1.3	66
153	A numerical model of non-equilibrium thermal plasmas. I. Transport properties. Physics of Plasmas, 2013, 20, 033508.	0.7	43
154	Dielectric breakdown properties of SF6–N2 mixtures at 0.01–1.6 MPa and 300–3000 K. Journal of Applied Physics, 2013, 113, .	1.1	53
155	Arc welding, plasma cutting and plasma spraying. Journal Physics D: Applied Physics, 2013, 46, 220301.	1.3	4
156	Numerical analysis of the influence of particle charging on the fume formation process in arc welding. Journal Physics D: Applied Physics, 2013, 46, 224007.	1.3	7
157	Theoretical investigation of the decay of an SF ₆ gas-blast arc using a two-temperature hydrodynamic model. Journal Physics D: Applied Physics, 2013, 46, 065203.	1.3	28
158	Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. Journal of Applied Physics, 2013, 114, 103301.	1.1	41
159	Influence of droplets in gas–metal arc welding: new modelling approach, and application to welding of aluminium. Science and Technology of Welding and Joining, 2013, 18, 32-37.	1.5	27
160	Influence of Plasma Characteristics on Nitrogen Mixing into Shielding Gas in Helium Gas Tungsten Arc Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 80-87.	0.1	1
161	Dynamically Plasma Diagnostics in MIG Welding of Aluminum. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 5s-8s.	0.1	3
162	Numerical Modeling of Nitrogen Absorption during Gas Tungsten Arc Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 14s-17s.	0.1	1

#	Article	IF	CITATIONS
163	Dynamic Behavior Metal Vapor during Gas Tungsten Arc Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 1s-4s.	0.1	3
164	Numerical Simulation of Energy Balance of Short Arc Lamp. IEEJ Transactions on Power and Energy, 2013, 133, 424-429.	0.1	1
165	Nitrogen Absorption Phenomenon of GTA Welding with Nitrogen Mixed Shielding Gases. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 41-47.	0.1	4
166	Numerical Analysis of Heat Transfer from Plasma to Base Metal Surface in Gas Tungsten Arc Welding with Metal Vapor. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2013, 31, 9s-13s.	0.1	0
167	Numerical investigation of the plasma flow through the constrictor of arc-heated thrusters. Journal Physics D: Applied Physics, 2012, 45, 235202.	1.3	10
168	A three-dimensional computational model of mig welding, including the ARC, electrode, weld pool and metal vapour. , 2012, , .		0
169	Evaluation of methods for determining food surface temperature in the presence of low-pressure cool plasma. Innovative Food Science and Emerging Technologies, 2012, 15, 23-30.	2.7	14
170	Birth of ball lightning. Journal of Geophysical Research, 2012, 117, .	3.3	24
171	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	1.3	511
172	Thermophysical Properties of High Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000ÂK and 0.1–10Åatm. Part 2: Transport Coefficients. Plasma Chemistry and Plasma Processing, 2012, 32, 495-518.	1.1	23
173	Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chemical Physics, 2012, 398, 64-72.	0.9	65
174	Thermophysical Properties of High-Temperature Reacting Mixtures of Carbon and Water in the Range 400–30,000 K and 0.1–10 atm. Part 1: Equilibrium Composition and Thermodynamic Properties. Plasma Chemistry and Plasma Processing, 2012, 32, 75-96.	1.1	27
175	Numerical Analysis of Nitrogen Atmosphere Mixing in GTA Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2012, 30, 238-243.	0.1	3
176	Simulation of Arc Splitting Process Considering Splitter-Plate Erosion. IEEE Transactions on Plasma Science, 2011, 39, 2862-2863.	0.6	7
177	Thermal plasmas for nanofabrication. Journal Physics D: Applied Physics, 2011, 44, 174025.	1.3	166
178	Thermophysical properties of carbon–argon and carbon–helium plasmas. Journal Physics D: Applied Physics, 2011, 44, 355207.	1.3	48
179	Numerical Investigations of the Influence of Metal Vapour in GMA Welding. Welding in the World, Le Soudage Dans Le Monde, 2011, 55, 114-120.	1.3	12
180	A Numerical Model with arc length variation of welding arc with constant voltage power source. Welding in the World, Le Soudage Dans Le Monde, 2011, 55, 33-37.	1.3	7

#	Article	IF	CITATIONS
181	Plasma nanoscience: setting directions, tackling grand challenges. Journal Physics D: Applied Physics, 2011, 44, 174001.	1.3	172
182	A two-dimensional capillary discharge model considering the ablation and deposition processes. Journal of Applied Physics, 2011, 110, .	1.1	18
183	The Development of the Arc in a Liquid Metal Current Limiter. IEEE Transactions on Plasma Science, 2011, 39, 2864-2865.	0.6	10
184	A self-consistent three-dimensional model of the arc, electrode and weld pool in gas–metal arc welding. Journal Physics D: Applied Physics, 2011, 44, 194009.	1.3	89
185	Graphene and Carbon Nanotubes From Arc Plasmas: Experiment and Plasma Modeling. IEEE Transactions on Plasma Science, 2011, 39, 2798-2799.	0.6	5
186	Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX. Frontiers of Materials Science, 2011, 5, 98-108.	1.1	12
187	Numerical Study of Arc Behavior in Miniature Circuit Breaker. IEEE Transactions on Plasma Science, 2011, 39, 2858-2859.	0.6	4
188	Two-Dimensional Modeling of the Capillary Plasma With the Kinetic Ablation Model. IEEE Transactions on Plasma Science, 2011, 39, 2398-2399.	0.6	7
189	Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions. Physics of Plasmas, 2011, 18, .	0.7	68
190	Three-dimensional modelling of arc behaviour and gas shield quality in tandem gas–metal arc welding using anti-phase pulse synchronization. Journal Physics D: Applied Physics, 2011, 44, 185205.	1.3	39
191	Metal vapour in atmospheric-pressure arcs. Journal Physics D: Applied Physics, 2010, 43, 430301.	1.3	5
192	The effects of metal vapour in arc welding. Journal Physics D: Applied Physics, 2010, 43, 434001.	1.3	192
193	Modeling Study on the Flow, Heat Transfer and Energy Conversion Characteristics of Low-Power Arc-Heated Hydrogen/Nitrogen Thrusters. Plasma Chemistry and Plasma Processing, 2010, 30, 707-731.	1.1	19
194	Numerical analysis of non-equilibrium plasma property in anode boundary layer of argon Gas Tungsten Arc. Surface and Coatings Technology, 2010, 205, S115-S119.	2.2	8
195	Modelling of arc welding: The importance of including the arc plasma in the computational domain. Vacuum, 2010, 85, 579-584.	1.6	45
196	Numerical Analysis of Fume Formation Mechanism in TIG Welding. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2010, 28, 369-375.	0.1	1
197	Simulation of Arc Characteristics in Miniature Circuit Breaker. IEEE Transactions on Plasma Science, 2010, 38, 2306-2311.	0.6	71
198	Comparisons of kinetic ablation models for the capillary discharge. Journal of Applied Physics, 2010, 108, 023301.	1.1	11

#	Article	IF	CITATIONS
199	Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding. Journal Physics D: Applied Physics, 2010, 43, 434009.	1.3	93
200	Modelling of gas–metal arc welding taking into account metal vapour. Journal Physics D: Applied Physics, 2010, 43, 434008.	1.3	92
201	Numerical analysis of fume formation mechanism in arc welding. Journal Physics D: Applied Physics, 2010, 43, 434012.	1.3	41
202	Metal vapour causes a central minimum in arc temperature in gas–metal arc welding through increased radiative emission. Journal Physics D: Applied Physics, 2010, 43, 022001.	1.3	91
203	Numerical Analysis of Arc Characteristics of Splitting Process Considering Ferromagnetic Plate in Low-Voltage Arc Chamber. IEEE Transactions on Plasma Science, 2010, 38, 3219-3225.	0.6	24
204	Modelling Study to Compare the Flow and Heat Transfer Characteristics of Low-Power Hydrogen, Nitrogen and Argon Arc-Heated Thrusters. Plasma Science and Technology, 2010, 12, 692-701.	0.7	23
205	Numerical analysis of the influence of splitter-plate erosion on an air arc in the quenching chamber of a low-voltage circuit breaker. Journal Physics D: Applied Physics, 2010, 43, 434011.	1.3	71
206	Metal Vapour in MIG Arcs Can Cause (1) Minima in Central Arc Temperatures and (2) Increased Arc Voltages. Welding in the World, Le Soudage Dans Le Monde, 2010, 54, R292-R297.	1.3	11
207	Study of Different Models of the Wall Ablation Process in Capillary Discharge. IEEE Transactions on Plasma Science, 2010, 38, 1033-1041.	0.6	23
208	Heat generation in illuminated gold nanoparticles on a flat surface. , 2010, , .		2
209	A two-flux model of the optical properties of gold nanoparticles on a porous polymer substrate. , 2010, , .		0
210	Numerical Analysis of Metal Vapor Behavior with Multi-diffusion System in TIG Welding of Stainless Steel. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2009, 27, 4s-7s.	0.1	12
211	The influence of electrode erosion on the air arc in a low-voltage circuit breaker. Journal of Applied Physics, 2009, 106, .	1.1	55
212	Simulation Study of the Influence of Wall Ablation on Arc Behavior in a Low-Voltage Circuit Breaker. IEEE Transactions on Plasma Science, 2009, 37, 261-269.	0.6	42
213	Metal Vapor Behavior in CTA Welding of a Stainless Steel Considering the Marangoni Effect. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 497-503.	0.8	9
214	Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. Journal Physics D: Applied Physics, 2009, 42, 194006.	1.3	162
215	Heat generation by optically and thermally interacting aggregates of gold nanoparticles under illumination. Nanotechnology, 2009, 20, 375702.	1.3	52
216	Numerical Simulation of Diffusion of Multiple Metal Vapours in a TIG Arc Plasma for Welding of Stainless Steel. Welding in the World, Le Soudage Dans Le Monde, 2009, 53, R166-R170.	1.3	9

#	Article	IF	CITATIONS
217	A computational investigation of the effectiveness of different shielding gas mixtures for arc welding. Journal Physics D: Applied Physics, 2009, 42, 115205.	1.3	94
218	Numerical simulation of metal vapor behavior in arc plasma. Surface and Coatings Technology, 2008, 202, 5302-5305.	2.2	36
219	A study of S-doped TiO2 for photoelectrochemical hydrogen generation from water. Journal of Materials Science, 2008, 43, 1389-1399.	1.7	57
220	Does carbon doping of TiO2 allow water splitting in visible light? Comments on "Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO2 for efficient water splitting― Solar Energy Materials and Solar Cells, 2008, 92, 363-367.	3.0	65
221	Plasma-deposited Ge nanoisland films on Si: is Stranski–Krastanow fragmentation unavoidable?. Journal Physics D: Applied Physics, 2008, 41, 092001.	1.3	40
222	Treatment of non-equilibrium phenomena in thermal plasma flows. Journal Physics D: Applied Physics, 2008, 41, 183001.	1.3	117
223	Temperature Distribution of Argon Gas Tungsten Arc Considering the Nonequilibrium Effect. IEEE Transactions on Plasma Science, 2008, 36, 1070-1071.	0.6	3
224	Metal Vapour Behaviour in Gas Tungsten Arc Thermal Plasma during Welding. Welding in the World, Le Soudage Dans Le Monde, 2008, 52, 82-88.	1.3	17
225	Thermal plasma waste treatment. Journal Physics D: Applied Physics, 2008, 41, 053001.	1.3	314
226	Numerical Analysis of the Effect of the Chamber Width and Outlet Area on the Motion of an Air Arc Plasma. IEEE Transactions on Plasma Science, 2008, 36, 2831-2837.	0.6	34
227	Numerical Modeling of Arc Root Transfer During Contact Opening in a Low-Voltage Air Circuit Breaker. IEEE Transactions on Plasma Science, 2008, 36, 1074-1075.	0.6	10
228	Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining, 2008, 13, 566-572.	1.5	42
229	Influence of shielding gas composition on arc properties in TIG welding. Science and Technology of Welding and Joining, 2008, 13, 225-231.	1.5	74
230	Plasma-controlled metal catalyst saturation and the initial stage of carbon nanostructure array growth. Journal of Applied Physics, 2008, 104, .	1.1	13
231	Simulation and Experimental Study of Arc Motion in a Low-Voltage Circuit Breaker Considering Wall Ablation. IEICE Transactions on Electronics, 2008, E91-C, 1240-1248.	0.3	8
232	Dependence of non-equilibrium plasma property of argon GTA on arc current. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2008, 26, 111-116.	0.1	2
233	A CO ₂ Gas Shielded Gas Tungsten Arc and its Application to Welding of Steel Sheets. Materials Science Forum, 2007, 539-543, 3926-3930.	0.3	2
234	Optical properties of an optically rough coating from inversion of diffuse reflectance measurements. Applied Optics, 2007, 46, 3133.	2.1	36

#	Article	IF	CITATIONS
235	Plasma-aided nanofabrication: where is the cutting edge?. Journal Physics D: Applied Physics, 2007, 40, 2223-2241.	1.3	236
236	Porous Vanadium/Titanium Oxides—Synthesis, Characterization, and Photocatalytic Activity. Australian Journal of Chemistry, 2007, 60, 533.	0.5	11
237	Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Solar Energy Materials and Solar Cells, 2007, 91, 1326-1337.	3.0	745
238	Numerical Modeling of an Ar–H2 Radio-Frequency Plasma Reactor under Thermal and Chemical Nonequilibrium Conditions. Plasma Chemistry and Plasma Processing, 2007, 27, 189-204.	1.1	24
239	Modified Kubelka–Munk model for calculation of the reflectance of coatings with optically-rough surfaces. Journal Physics D: Applied Physics, 2006, 39, 3571-3581.	1.3	111
240	Characterization of the behavior of chemically reactive species in a nonequilibrium inductively coupled argon-hydrogen thermal plasma under pulse-modulated operation. Journal of Applied Physics, 2006, 100, 103303.	1.1	21
241	CO2-shielded arc as a high-intensity heat source. Vacuum, 2006, 80, 1195-1198.	1.6	25
242	Prediction of energy source properties of free-burning arcs. Vacuum, 2006, 80, 1190-1194.	1.6	27
243	Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 2006, 31, 1999-2017.	3.8	786
244	The Influence of Medium on Low-Voltage Circuit Breaker Arcs. Plasma Science and Technology, 2006, 8, 680-684.	0.7	7
245	Thomson scattering diagnostics of thermal plasmas:â€,â€,Laser heating of electrons and the existence of local thermodynamic equilibrium. Physical Review E, 2004, 69, 016408.	0.8	27
246	A Statistical Mechanical View of the Determination of the Composition of Multi?Temperature Plasmas. Plasma Chemistry and Plasma Processing, 2004, 24, 435-446.	1.1	17
247	Formation of titanium nanoparticles from a titanium tetrachloride plasma. Journal Physics D: Applied Physics, 2004, 37, 2841-2847.	1.3	43
248	Generation of Microwave-Induced Plasmas in Automotive Exhaust Gas Mixtures Using Pulsed Microwave Energy. Journal of Microwave Power and Electromagnetic Energy, 2003, 38, 95-101.	0.4	0
249	TWO-TEMPERATURE COMBINED DIFFUSION COEFFICIENTS IN ARGON-HELIUM THERMAL PLASMAS. High Temperature Material Processes, 2003, 7, 107-113.	0.2	3
250	Electron Heating in the Measurement of Electron Temperature by Thomson Scattering: Are Thermal Plasmas Thermal?. Physical Review Letters, 2002, 89, 025002.	2.9	36
251	Diffusion in two-temperature thermal plasmas. Physical Review E, 2002, 66, 056407.	0.8	28
252	Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapor. IEEE Transactions on Plasma Science, 2002, 30, 706-719.	0.6	120

#	Article	IF	CITATIONS
253	Enthalpy-probe diagnostics of an atmospheric-pressure unleaded petrol exhaust-gas microwave-induced plasma. IEEE Transactions on Plasma Science, 2002, 30, 1587-1591.	0.6	3
254	Glass sphere discharges for ozone production. IEEE Transactions on Plasma Science, 2002, 30, 180-181.	0.6	16
255	Plasma Destruction of Ozone Depleting Substances. Plasma Chemistry and Plasma Processing, 2002, 22, 371-385.	1.1	39
256	Modeling of the physics and chemistry of thermal plasma waste destruction. Physics of Plasmas, 2001, 8, 2565-2571.	0.7	43
257	Thermal plasmas in gas mixtures. Journal Physics D: Applied Physics, 2001, 34, R151-R173.	1.3	188
258	Transport Coefficients of Hydrogen and Argon–Hydrogen Plasmas. Plasma Chemistry and Plasma Processing, 2000, 20, 279-297.	1.1	179
259	An investigation of a dc dielectric barrier discharge using a disc of glass beads. Journal Physics D: Applied Physics, 2000, 33, 1487-1492.	1.3	36
260	Enthalpy probe diagnostics of an atmospheric pressure argon microwave induced plasma. Journal Physics D: Applied Physics, 2000, 33, 1996-2003.	1.3	7
261	A comparison of measurements and calculations of demixing in free-burning arcs. Journal Physics D: Applied Physics, 2000, 33, 2183-2188.	1.3	28
262	Plasma Destruction of Gaseous and Liquid Wastes. Annals of the New York Academy of Sciences, 1999, 891, 106-123.	1.8	14
263	Color separation in an argon-helium arc due to radiative properties and demixing. IEEE Transactions on Plasma Science, 1999, 27, 30-31.	0.6	8
264	Cataphoresis in electric arcs. Journal Physics D: Applied Physics, 1998, 31, 3383-3390.	1.3	46
265	Destruction of ozone-depleting substances in a thermal plasma reactor. Applied Physics Letters, 1998, 73, 459-461.	1.5	27
266	Demixing in free-burning arcs. Physical Review E, 1997, 55, 7473-7494.	0.8	105
267	Transport coefficients of helium and argon-helium plasmas. IEEE Transactions on Plasma Science, 1997, 25, 809-814.	0.6	105
268	Prediction of gas tungsten arc welding properties in mixtures of argon and hydrogen. IEEE Transactions on Plasma Science, 1997, 25, 925-930.	0.6	39
269	The influence of demixing on the properties of a freeâ€burning arc. Applied Physics Letters, 1996, 69, 328-330.	1.5	14
270	A comparison of treatments of diffusion in thermal plasmas. Journal Physics D: Applied Physics, 1996, 29, 1922-1932.	1.3	123

#	Article	IF	CITATIONS
271	Modelling and diagnostics of plasma chemical processes in mixed-gas arcs. Pure and Applied Chemistry, 1996, 68, 1137-1142.	0.9	13
272	Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chemistry and Plasma Processing, 1995, 15, 279-307.	1.1	332
273	Diffusion of atomic hydrogen in an atmospheric-pressure free-burning arc discharge. Physical Review E, 1995, 52, 2999-3009.	0.8	36
274	Interconversion of chlorofluorocarbons in plasmas. Journal of the Chemical Society Chemical Communications, 1995, , 347.	2.0	11
275	Laser-scattering temperature measurements of a free-burning arc in nitrogen. Journal Physics D: Applied Physics, 1994, 27, 1492-1498.	1.3	21
276	Modified Fowler–Milne method for the spectroscopic measurement of temperature and composition of multielement thermal plasmas. Review of Scientific Instruments, 1994, 65, 3423-3427.	0.6	32
277	Demixing Due to Frictional Forces in an Electric Arc. Physical Review Letters, 1994, 73, 1797-1800.	2.9	35
278	Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing, 1994, 14, 451-490.	1.1	466
279	Mathematical model and laserâ€scattering temperature measurements of a directâ€current plasma torch discharging into air. Journal of Applied Physics, 1993, 73, 4759-4769.	1.1	72
280	Combined diffusion coefficients in equilibrium mixtures of dissociating gases. Journal of Chemical Physics, 1993, 99, 1340-1343.	1.2	21
281	Diffusion in equilibrium mixtures of ionized gases. Physical Review E, 1993, 48, 3594-3603.	0.8	144
282	Laserâ€scattering measurement of temperature profiles of a freeâ€burning arc. Applied Physics Letters, 1992, 60, 1304-1306.	1.5	37
283	Combined Radio-Frequency and Forced-Air Drying of Alfalfa. Journal of Microwave Power and Electromagnetic Energy, 1992, 27, 223-232.	0.4	14
284	Temperature measurement in thermal plasmas by Rayleigh scattering. Journal Physics D: Applied Physics, 1992, 25, 634-643.	1.3	48
285	Rectangular waveguide launchers for ion-cyclotron-resonance heating of tokamaks. Fusion Engineering and Design, 1992, 19, 11-27.	1.0	1
286	Torsional Alfvén wave excitation by mode conversion in a tokamak plasma. Nuclear Fusion, 1991, 31, 465-486.	1.6	4
287	Analysis of the loading resistance for ICRF heating experiments in ASDEX. Plasma Physics and Controlled Fusion, 1991, 33, 155-168.	0.9	5
288	Dependence of heating efficiency and impurity production on the toroidal wavelength in ion cyclotron resonance heating. Nuclear Fusion, 1991, 31, 219-232.	1.6	7

#	Article	IF	CITATIONS
289	Elongated quadrupole ion traps for frequency standard applications. Journal of Applied Physics, 1991, 70, 2880-2882.	1.1	1
290	Invited paper: Waves in the edge plasma during ion cyclotron resonance heating. Fusion Engineering and Design, 1990, 12, 79-92.	1.0	28
291	A toroidally broad antenna for ion cyclotron resonance heating of large tokamaks. Nuclear Fusion, 1989, 29, 15-26.	1.6	4
292	Direct excitation of the torsional Alfven wave in a Tokamak scrape-off plasma by a Faraday shielded antenna. Plasma Physics and Controlled Fusion, 1989, 31, 21-34.	0.9	9
293	Initial operation of the Wendelstein 7AS advanced stellarator. Plasma Physics and Controlled Fusion, 1989, 31, 1579-1596.	0.9	124
294	Comment on â€~ã€~A Flettner rotor ship demonstration,'' by G. Barnes [Am. J. Phys. 55, 1040 (1987)]. Ar Journal of Physics, 1989, 57, 181-182.	nerican 0.3	0
295	Alfvén surface waves in a two-ion-species cylindrical plasma with finite edge density. Journal of Plasma Physics, 1989, 42, 361.	0.7	1
296	Bernoulli effect. Physics Education, 1986, 21, 262-263.	0.3	5
297	Alfven wave modes in a cylindrical plasma with finite edge density. Plasma Physics and Controlled Fusion, 1986, 28, 597-612.	0.9	16
298	Progress towards a Complete Model of Metal Additive Manufacturing. Materials Science Forum, 0, 1016, 1031-1038.	0.3	4
299	Modelling and experimental investigations of composition-dependent heat and mass transfer during Cu-Ni alloy nanoparticle synthesis in a transferred arc helium plasma. Journal Physics D: Applied Physics, 0, , .	1.3	1