
Cezary Cybulski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3745419/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
2	Impact of Oophorectomy on Cancer Incidence and Mortality in Women With a <i>BRCA1</i> or <i>BRCA2</i> Mutation. Journal of Clinical Oncology, 2014, 32, 1547-1553.	1.6	523
3	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
4	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
5	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	7.4	390
6	GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nature Genetics, 2013, 45, 362-370.	21.4	326
7	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
8	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	21.4	221
9	Risk of Breast Cancer in Women With a <i>CHEK2</i> Mutation With and Without a Family History of Breast Cancer. Journal of Clinical Oncology, 2011, 29, 3747-3752.	1.6	207
10	Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. European Urology, 2014, 66, 489-499.	1.9	195
11	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
12	CA125 and Ovarian Cancer: A Comprehensive Review. Cancers, 2020, 12, 3730.	3.7	174
13	A high proportion of founder <i>BRCA1</i> mutations in Polish breast cancer families. International Journal of Cancer, 2004, 110, 683-686.	5.1	170
14	Germline RECQL mutations are associated with breast cancer susceptibility. Nature Genetics, 2015, 47, 643-646.	21.4	168
15	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
16	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.3	153
17	Interim Results from the IMPACT Study: Evidence for Prostate-specific Antigen Screening in BRCA2 Mutation Carriers. European Urology, 2019, 76, 831-842.	1.9	148
18	Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nature Communications, 2013, 4, 1628.	12.8	144

#	Article	IF	CITATIONS
19	A Novel Founder CHEK2 Mutation is Associated with Increased Prostate Cancer Risk: Table 1. Cancer Research, 2004, 64, 2677-2679.	0.9	137
20	Clinical outcomes in women with breast cancer and a PALB2 mutation: a prospective cohort analysis. Lancet Oncology, The, 2015, 16, 638-644.	10.7	137
21	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
22	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
23	Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nature Communications, 2017, 8, 15724.	12.8	106
24	A deletion in CHEK2 of 5,395Âbp predisposes to breast cancer in Poland. Breast Cancer Research and Treatment, 2007, 102, 119-122.	2.5	102
25	<i>CHEK2</i> mutations and the risk of papillary thyroid cancer. International Journal of Cancer, 2015, 137, 548-552.	5.1	97
26	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
27	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
28	Germline 657del5 mutation in the NBS1 gene in breast cancer patients. International Journal of Cancer, 2003, 106, 379-381.	5.1	80
29	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78
30	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	1.8	77
31	Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis consortium study. Journal of Pathology: Clinical Research, 2018, 4, 250-261.	3.0	70
32	Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Medicine, 2016, 5, 1125-1136.	2.8	68
33	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	2.9	67
34	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63
35	Germline CHEK2 mutations and colorectal cancer risk: different effects of a missense and truncating mutations?. European Journal of Human Genetics, 2007, 15, 237-241.	2.8	61
36	The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Medicine, 2019, 16, e1002724.	8.4	59

#	Article	IF	CITATIONS
37	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	9.4	56
38	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
39	Factors influencing ovulation and the risk of ovarian cancer in <scp><i>BRCA1</i></scp> and <scp><i>BRCA2</i></scp> mutation carriers. International Journal of Cancer, 2015, 137, 1136-1146.	5.1	56
40	Multiple primary cancers as a guide to heritability. International Journal of Cancer, 2014, 135, 1756-1763.	5.1	55
41	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	2.3	54
42	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	12.8	50
43	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	3.5	47
44	The risk of gastric cancer in carriers of CHEK2 mutations. Familial Cancer, 2013, 12, 473-478.	1.9	46
45	A Low Selenium Level Is Associated with Lung and Laryngeal Cancers. PLoS ONE, 2013, 8, e59051.	2.5	46
46	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
47	Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk. PLoS ONE, 2015, 10, e0128106.	2.5	44
48	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
49	Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE). Clinical Cancer Research, 2020, 26, 5411-5423.	7.0	43
50	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	5.0	42
51	Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Medicine, 2016, 14, 66.	5.5	42
52	Constitutional CHEK2 mutations are associated with a decreased risk of lung and laryngeal cancers. Carcinogenesis, 2008, 29, 762-765.	2.8	41
53	Genetic Variation at 9p22.2 and Ovarian Cancer Risk for BRCA1 and BRCA2 Mutation Carriers. Journal of the National Cancer Institute, 2011, 103, 105-116.	6.3	40
54	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	12.8	40

#	Article	IF	CITATIONS
55	The spectrum of mutations predisposing to familial breast cancer in Poland. International Journal of Cancer, 2019, 145, 3311-3320.	5.1	39
56	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	3.5	34
57	BRCA1 mutations and prostate cancer in Poland. European Journal of Cancer Prevention, 2008, 17, 62-66.	1.3	33
58	Genome-wide Analysis Identifies Novel Loci Associated with Ovarian Cancer Outcomes: Findings from the Ovarian Cancer Association Consortium. Clinical Cancer Research, 2015, 21, 5264-5276.	7.0	33
59	<i>BRCA1</i> promoter methylation in peripheral blood is associated with the risk of tripleâ€negative breast cancer. International Journal of Cancer, 2020, 146, 1293-1298.	5.1	33
60	CHEK2-Positive Breast Cancers in Young Polish Women. Clinical Cancer Research, 2006, 12, 4832-4835.	7.0	32
61	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
62	The G84E mutation in the HOXB13 gene is associated with an increased risk of prostate cancer in Poland. Prostate, 2013, 73, 542-548.	2.3	31
63	Association of zinc level and polymorphism in MMP-7 gene with prostate cancer in Polish population. PLoS ONE, 2018, 13, e0201065.	2.5	30
64	Network-Based Integration of GWAS and Gene Expression Identifies a <i>HOX</i> -Centric Network Associated with Serous Ovarian Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1574-1584.	2.5	28
65	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	5.1	28
66	Blood cadmium levels as a marker for early lung cancer detection. Journal of Trace Elements in Medicine and Biology, 2021, 64, 126682.	3.0	28
67	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	2.5	27
68	Sex specific associations in genome wide association analysis of renal cell carcinoma. European Journal of Human Genetics, 2019, 27, 1589-1598.	2.8	27
69	Mutations in ATM , NBN and BRCA2 predispose to aggressive prostate cancer in Poland. International Journal of Cancer, 2020, 147, 2793-2800.	5.1	27
70	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	2.5	27
71	Assessing the role of insulinâ€like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. International Journal of Cancer, 2016, 139, 1520-1533.	5.1	26
72	Population-based targeted sequencing of 54 candidate genes identifies <i>PALB2</i> as a susceptibility gene for high-grade serous ovarian cancer. Journal of Medical Genetics, 2021, 58, 305-313.	3.2	26

#	Article	IF	CITATIONS
73	The 30 kb deletion in the <i>APOBEC3</i> cluster decreases <i>APOBEC3A</i> and <i>APOBEC3B</i> expression and creates a transcriptionally active hybrid gene but does not associate with breast cancer in the European population. Oncotarget, 2017, 8, 76357-76374.	1.8	26
74	Influence of the selenium level on overall survival in lung cancer. Journal of Trace Elements in Medicine and Biology, 2019, 56, 46-51.	3.0	25
75	BARD1 is a Low/Moderate Breast Cancer Risk Gene: Evidence Based on an Association Study of the Central European p.Q564X Recurrent Mutation. Cancers, 2019, 11, 740.	3.7	25
76	Common Genetic Variation in Circadian Rhythm Genes and Risk of Epithelial Ovarian Cancer (EOC). Journal of Genetics and Genome Research, 2015, 2, .	0.3	25
77	A common nonsense mutation of the BLM gene and prostate cancer risk and survival. Gene, 2013, 532, 173-176.	2.2	24
78	Common variants at the <i>CHEK2</i> gene locus and risk of epithelial ovarian cancer. Carcinogenesis, 2015, 36, 1341-1353.	2.8	24
79	Prevalence of the E318K and V320I MITF germline mutations in Polish cancer patients and multiorgan cancer risk-a population-based study. Cancer Genetics, 2014, 207, 128-132.	0.4	23
80	Common variants of xeroderma pigmentosum genes and prostate cancer risk. Gene, 2014, 546, 156-161.	2.2	23
81	Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. British Journal of Cancer, 2016, 115, 624-631.	6.4	23
82	Molecular Analysis of HLA-G in Women with High-Risk Pregnancy and Their Partners with Regard to Possible Complications. International Journal of Environmental Research and Public Health, 2019, 16, 982.	2.6	23
83	Influence of the Levels of Arsenic, Cadmium, Mercury and Lead on Overall Survival in Lung Cancer. Biomolecules, 2021, 11, 1160.	4.0	23
84	Epithelialâ€Mesenchymal Transition (EMT) Gene Variants and Epithelial Ovarian Cancer (EOC) Risk. Genetic Epidemiology, 2015, 39, 689-697.	1.3	22
85	Prevalence of Germline Mutations in Genes Engaged in DNA Damage Repair by Homologous Recombination in Patients with Triple-Negative and Hereditary Non-Triple-Negative Breast Cancers. PLoS ONE, 2015, 10, e0130393.	2.5	22
86	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	2.5	22
87	Population distribution and ancestry of the cancer protective MDM2 SNP285 (rs117039649). Oncotarget, 2014, 5, 8223-8234.	1.8	22
88	Epistatic Relationship between the Cancer Susceptibility Genes CHEK2 and p27. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 572-576.	2.5	21
89	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	2.5	21
90	Inherited NBN Mutations and Prostate Cancer Risk and Survival. Cancer Research and Treatment, 2019, 51, 1180-1187.	3.0	21

#	Article	IF	CITATIONS
91	DNA Variation in MSR1, RNASEL and E-Cadherin Genes and Prostate Cancer in Poland. Urologia Internationalis, 2007, 79, 44-49.	1.3	20
92	Predictors of survival for breast cancer patients with a BRCA1 mutation. Breast Cancer Research and Treatment, 2018, 168, 513-521.	2.5	20
93	The Prevalence of Founder Mutations among Individuals from Families with Familial Pancreatic Cancer Syndrome. Cancer Research and Treatment, 2017, 49, 430-436.	3.0	19
94	Blood Copper Levels and the Occurrence of Colorectal Cancer in Poland. Biomedicines, 2021, 9, 1628.	3.2	19
95	Blood arsenic levels and the risk of familial breast cancer in Poland. International Journal of Cancer, 2020, 146, 2721-2727.	5.1	18
96	PALB2 mutations and prostate cancer risk and survival. British Journal of Cancer, 2021, 125, 569-575.	6.4	18
97	Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk. Human Molecular Genetics, 2016, 25, 3600-3612.	2.9	17
98	Screening with magnetic resonance imaging, mammography and ultrasound in women at average and intermediate risk of breast cancer. Hereditary Cancer in Clinical Practice, 2017, 15, 4.	1.5	17
99	Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. International Journal of Cancer, 2017, 140, 322-328.	5.1	17
100	Do founder mutations characteristic of some cancer sites also predispose to pancreatic cancer?. International Journal of Cancer, 2016, 139, 601-606.	5.1	16
101	Serum 25(OH)D concentration, common variants of the <i>VDR</i> gene and lung cancer occurrence. International Journal of Cancer, 2017, 141, 336-341.	5.1	16
102	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	3.7	16
103	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	3.9	16
104	Evaluating the ovarian cancer gonadotropin hypothesis: A candidate gene study. Gynecologic Oncology, 2015, 136, 542-548.	1.4	15
105	A comparison of ovarian cancer mortality in women with BRCA1 mutations undergoing annual ultrasound screening or preventive oophorectomy. Gynecologic Oncology, 2019, 155, 270-274.	1.4	15
106	Serum selenium level and cancer risk: a nested case-control study. Hereditary Cancer in Clinical Practice, 2019, 17, 33.	1.5	15
107	Validated biomarker assays confirm that <scp>ARID1A</scp> loss is confounded with <scp>MMR</scp> deficiency, <scp>CD8⁺ TIL</scp> infiltration, and provides no independent prognostic value in endometriosisâ€associated ovarian carcinomas. Journal of Pathology, 2022, 256, 388-401.	4.5	15
108	Polymorphisms in MMP-1, MMP-2, MMP-7, MMP-13 and MT2A do not contribute to breast, lung and colon cancer risk in polish population. Hereditary Cancer in Clinical Practice, 2020, 18, 16.	1.5	14

#	Article	IF	CITATIONS
109	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	2.8	14
110	Serum Selenium Level Predicts 10-Year Survival after Breast Cancer. Nutrients, 2021, 13, 953.	4.1	14
111	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	3.9	14
112	Variation in NF-κB Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1421-1427.	2.5	13
113	Inherited variants in XRCC2 and the risk of breast cancer. Breast Cancer Research and Treatment, 2019, 178, 657-663.	2.5	13
114	Lung Cancer Occurrence—Correlation with Serum Chromium Levels and Genotypes. Biological Trace Element Research, 2021, 199, 1228-1236.	3.5	13
115	Recurrent Mutations in BRCA1, BRCA2, RAD51C, PALB2 and CHEK2 in Polish Patients with Ovarian Cancer. Cancers, 2021, 13, 849.	3.7	13
116	Pathological complete response after cisplatin neoadjuvant therapy is associated with the downregulation of DNA repair genes in <i>BRCA1</i> associated triple-negative breast cancers. Oncotarget, 2016, 7, 68662-68673.	1.8	13
117	Prospective evaluation of alcohol consumption and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Research and Treatment, 2015, 151, 435-441.	2.5	12
118	Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition. British Journal of Cancer, 2018, 118, 266-276.	6.4	12
119	Survival from breast cancer in women with a BRCA2 mutation by treatment. British Journal of Cancer, 2021, 124, 1524-1532.	6.4	12
120	Management of ovarian and endometrial cancers in women belonging to HNPCC carrier families: review of the literature and results of cancer risk assessment in Polish HNPCC families. Hereditary Cancer in Clinical Practice, 2015, 13, 3.	1.5	11
121	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	4.1	11
122	Inherited Variants in BLM and the Risk and Clinical Characteristics of Breast Cancer. Cancers, 2019, 11, 1548.	3.7	11
123	Prevalence of Recurrent Mutations Predisposing to Breast Cancer in Early-Onset Breast Cancer Patients from Poland. Cancers, 2020, 12, 2321.	3.7	11
124	Prevalence of germline TP53 variants among early-onset breast cancer patients from Polish population. Breast Cancer, 2021, 28, 226-235.	2.9	10
125	RECQL: a DNA helicase in breast cancer. Oncotarget, 2015, 6, 26558-26559.	1.8	10
126	<i>BRCA1/2</i> â€negative hereditary tripleâ€negative breast cancers exhibit BRCAness. International Journal of Cancer, 2017, 140, 1545-1550.	5.1	9

#	Article	IF	CITATIONS
127	Variants in genes encoding small CTPases and association with epithelial ovarian cancer susceptibility. PLoS ONE, 2018, 13, e0197561.	2.5	9
128	Comparison of Alu-PCR, microsatellite instability, and immunohistochemical analyses in finding features characteristic for hereditary nonpolyposis colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2001, 127, 565-569.	2.5	8
129	CHEK2 Alleles Predispose to Renal Cancer in Poland. JAMA Oncology, 2019, 5, 576.	7.1	8
130	Serum Selenium Level and 10-Year Survival after Melanoma. Biomedicines, 2021, 9, 991.	3.2	8
131	BRCA1 and BRCA2 mutations in ovarian cancer patients from Belarus: update. Hereditary Cancer in Clinical Practice, 2021, 19, 13.	1.5	8
132	Founder Mutations for Early Onset Melanoma as Revealed by Whole Exome Sequencing Suggests That This is Not Associated with the Increasing Incidence of Melanoma in Poland. Cancer Research and Treatment, 2019, 51, 337-344.	3.0	8
133	The Relationship between the HLA-G Polymorphism and sHLA-G Levels in Parental Pairs with High-Risk Pregnancy. International Journal of Environmental Research and Public Health, 2019, 16, 1546.	2.6	7
134	Age-specific risks of incident, contralateral and ipsilateral breast cancer among 1776 Polish BRCA1 mutation carriers. Breast Cancer Research and Treatment, 2019, 174, 769-774.	2.5	7
135	Genetic predisposition to male breast cancer in Poland. BMC Cancer, 2021, 21, 975.	2.6	7
136	BRCA1/2 mutations are not a common cause of malignant melanoma in the Polish population. PLoS ONE, 2018, 13, e0204768.	2.5	6
137	Allelic modification of breast cancer risk in women with an NBN mutation. Breast Cancer Research and Treatment, 2019, 178, 427-431.	2.5	6
138	Blood Arsenic Levels as a Marker of Breast Cancer Risk among BRCA1 Carriers. Cancers, 2021, 13, 3345.	3.7	6
139	An appraisal of genetic testing for prostate cancer susceptibility. Npj Precision Oncology, 2022, 6, .	5.4	6
140	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	3.3	5
141	Assessment of variation in immunosuppressive pathway genes reveals TGFBR2 to be associated with risk of clear cell ovarian cancer. Oncotarget, 2016, 7, 69097-69110.	1.8	5
142	Risk of Second Primary Thyroid Cancer in Women with Breast Cancer. Cancers, 2022, 14, 957.	3.7	5
143	Review Selenium as aÂmarker of cancer risk and of selection for control examinations in surveillance. Wspolczesna Onkologia, 2015, 1A, 60-61.	1.4	4
144	Association of recurrent mutations in BRCA1, BRCA2, RAD51C, PALB2, and CHEK2 with the risk of borderline ovarian tumor. Hereditary Cancer in Clinical Practice, 2022, 20, 11.	1.5	4

#	Article	IF	CITATIONS
145	The impact of oophorectomy on survival from breast cancer in patients with CHEK2 mutations. British Journal of Cancer, 2022, 127, 84-91.	6.4	4
146	Testing Ashkenazi Jewish Women for Mutations Predisposing to Breast Cancer in Genes Other Than <i>BRCA1</i> and <i>BRCA2</i> . JAMA Oncology, 2018, 4, 1012.	7.1	3
147	rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology. International Journal of Molecular Sciences, 2018, 19, 2473.	4.1	3
148	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	4.1	3
149	Constitutional variants in POT1, TERF2IP, and ACD genes in patients with melanoma in the Polish population. European Journal of Cancer Prevention, 2020, 29, 511-519.	1.3	3
150	Mutations in the von Hippel-Lindau Tumour Suppressor Gene in Central Nervous System Hemangioblastomas. Hereditary Cancer in Clinical Practice, 2004, 2, 93.	1.5	2
151	Population Screening of CHEK2 Mutations in Poland. Hereditary Cancer in Clinical Practice, 2006, 4, 57.	1.5	2
152	From Phenotype to Genotype: A New Twist on Identifying Genes Responsible for Inherited Hearing Loss. Human Mutation, 2013, 34, v-v.	2.5	2
153	Genotyping by Induced Förster Resonance Energy Transfer (iFRET) Mechanism and Simultaneous Mutation Scanning. Human Mutation, 2013, 34, n/a-n/a.	2.5	2
154	Reply to â€~Mutations in RECQL are not associated with breast cancer risk in an Australian population'. Nature Genetics, 2018, 50, 1348-1349.	21.4	2
155	Variant Identification in <i>BARD1</i> , <i>PRDM9</i> , <i>RCC1</i> , and <i>RECQL</i> in Patients with Ovarian Cancer by Targeted Next-generation Sequencing of DNA Pools. Cancer Prevention Research, 2022, 15, 151-160.	1.5	2
156	First recurrent large genomic rearrangement in the BRCA1 gene found in Poland. Cancer Epidemiology, 2014, 38, 382-385.	1.9	1
157	Recurrent PALB2 mutations and the risk of cancers of bladder or kidney in Polish population. Hereditary Cancer in Clinical Practice, 2021, 19, 6.	1.5	1
158	Survival of bladder or renal cancer in patients with CHEK2 mutations. PLoS ONE, 2021, 16, e0257132.	2.5	1
159	Do BARD1 Mutations Confer an Elevated Risk of Prostate Cancer?. Cancers, 2021, 13, 5464.	3.7	1
160	Common Variant in ALDH2 Modifies the Risk of Breast Cancer Among Carriers of the p.K3326* Variant in BRCA2. JCO Precision Oncology, 2022, 6, e2100450.	3.0	1
161	Low Blood-As Levels and Selected Genotypes Appears to Be Promising Biomarkers for Occurrence of Colorectal Cancer in Women. Biomedicines, 2021, 9, 1105.	3.2	0
162	Frequency of BRCA1 and BRCA2 mutations in ovarian cancer patients in South-East Poland. Hereditary Cancer in Clinical Practice, 2022, 20, 12.	1.5	0