Wei Ren

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3745259/wei-ren-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

274 28,456 75 167 g-index

297 35,865 4.4 8.03 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
274	Distributed Time-Varying Quadratic Optimal Resource Allocation Subject to Nonidentical Time-Varying Hessians With Application to Multiquadrotor Hose Transportation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2022 , 1-11	7.3	O
273	Distributed and communication-efficient solutions to linear equations with special sparse structure. <i>Systems and Control Letters</i> , 2022 , 160, 105065	2.4	
272	Differentially Private Consensus With Quantized Communication. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4075-4088	10.2	6
271	Containment Problem for Multiagent Systems With Nonconvex Velocity Constraints. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4716-4721	10.2	5
270	A scaling-function approach for distributed constrained optimization in unbalanced multi-agent networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	
269	Multi-Agent Control: A Graph-Theoretic Perspective. <i>Journal of Systems Science and Complexity</i> , 2021 , 34, 1973-2002	1	1
268	Continuous-time distributed Nash equilibrium seeking algorithms for non-cooperative constrained games. <i>Automatica</i> , 2021 , 127, 109535	5.7	7
267	Robust Distributed Average Tracking for Double-Integrator Agents Without Velocity Measurements Under Event-Triggered Communication. <i>IEEE Transactions on Control of Network</i> Systems, 2021 , 8, 828-837	4	1
266	Generalized Nash Equilibrium Seeking via Continuous-Time Coordination Dynamics Over Digraphs. <i>IEEE Transactions on Control of Network Systems</i> , 2021 , 8, 1023-1033	4	3
265	Distributed Resource Allocation Over Directed Graphs via Continuous-Time Algorithms. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2021 , 51, 1097-1106	7.3	29
264	Distributed Adaptive Finite-Time Consensus for Second-Order Multiagent Systems With Mismatched Disturbances Under Directed Networks. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 1347-13	358 ^{.2}	20
263	Distributed economic dispatch via a predictive scheme: Heterogeneous delays and privacy preservation. <i>Automatica</i> , 2021 , 123, 109356	5.7	7
262	Fully Distributed Joint Localization and Target Tracking With Mobile Robot Networks. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 29, 1519-1532	4.8	4
261	Observer-Based Distributed Mean-Square Consensus Design for Leader-Following Multiagent Markov Jump Systems. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3054-3061	10.2	5
260	Adaptive Image-Space Regulation for Robotic Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 29, 850-857	4.8	2
259	Finite-Horizon H Fault-Tolerant Constrained Consensus for Multiagent Systems With Communication Delays. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 416-426	10.2	11
258	Design of Distributed Event-Triggered Average Tracking Algorithms for Homogeneous and Heterogeneous Multi-Agent Systems. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	15

(2020-2021)

257	Cooperative Adaptive Containment Control With Parameter Convergence via Cooperative Finite-Time Excitation. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	5
256	A Unified Framework for Adaptive Leaderless Consensus of Uncertain Multi-agent Systems under Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	4
255	Angle-Based Analysis Approach for Distributed Constrained Optimization. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	Ο
254	Distributed Nonlinear Placement for Multicluster Systems: A Time-Varying Nash Equilibrium-Seeking Approach. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
253	Distributed Average Tracking in Weight-Unbalanced Directed Networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 4436-4443	5.9	4
252	Fully distributed consensus control for a class of disturbed second-order multi-agent systems with directed networks. <i>Automatica</i> , 2021 , 132, 109816	5.7	4
251	Distributed Time-Varying Optimization With State-Dependent Gains: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 1-10	4.8	0
250	Cooperative Startup Control for Heterogeneous Vehicle Platoons: A Finite-time Output Tracking-based Approach. <i>IEEE Transactions on Control of Network Systems</i> , 2021 , 1-1	4	4
249	Distributed Average Tracking in Multi-agent Systems 2020 ,		5
	Burger of the first of the Conference of the State for the State for the State of t		
248	Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations. <i>Automatica</i> , 2020 , 116, 108917	5.7	25
248 247		5.7	25
	fast-switching perturbations. <i>Automatica</i> , 2020 , 116, 108917	5.7	25
247	fast-switching perturbations. <i>Automatica</i> , 2020 , 116, 108917 Distributed Average Tracking for Double-Integrator Dynamics 2020 , 79-124	5.7	25
247 246	Distributed Average Tracking for Double-Integrator Dynamics 2020, 79-124 Distributed Average Tracking with Input Saturation 2020, 157-175	5.7	25
247 246 245	Distributed Average Tracking for Double-Integrator Dynamics 2020, 79-124 Distributed Average Tracking with Input Saturation 2020, 157-175 Distributed Average Tracking for General Linear Dynamics 2020, 125-134	5.7	25
247 246 245	Distributed Average Tracking for Double-Integrator Dynamics 2020, 79-124 Distributed Average Tracking with Input Saturation 2020, 157-175 Distributed Average Tracking for General Linear Dynamics 2020, 125-134 Distributed Average Tracking for Networked Euler Lagrange Systems 2020, 135-156	5.7	25
247 246 245 244 243	Distributed Average Tracking for Double-Integrator Dynamics 2020, 79-124 Distributed Average Tracking with Input Saturation 2020, 157-175 Distributed Average Tracking for General Linear Dynamics 2020, 125-134 Distributed Average Tracking for Networked Euler Dynamics 2020, 135-156 Distributed Average Tracking in Distributed Convex Optimization 2020, 193-231	5.7	25

239	Distributed Continuous-Time Optimization with Time-Varying Objective Functions and Inequality Constraints 2020 ,		3
238	Distributed Average Tracking via Nonsmooth Feedback 2020 , 39-60		
237	Dynamic Modularity Approach to Adaptive Control of Robotic Systems With Closed Architecture. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 2760-2767	5.9	5
236	Cooperation of Multiple Connected Vehicles at Unsignalized Intersections: Distributed Observation, Optimization, and Control. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 10744-107	5 8:9	40
235	Sign projected gradient flow: A continuous-time approach to convex optimization with linear equality constraints. <i>Automatica</i> , 2020 , 120, 109156	5.7	13
234	Distributed Continuous-Time Algorithms for Optimal Resource Allocation With Time-Varying Quadratic Cost Functions. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 1974-1984	4	2
233	Edge-Based Finite-Time Protocol Analysis With Final Consensus Value and Settling Time Estimations. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 1450-1459	10.2	33
232	Distributed Time-Varying Convex Optimization for a Class of Nonlinear Multiagent Systems. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 801-808	5.9	19
231	Finite-Time Consensus for Linear Multiagent Systems via Event-Triggered Strategy Without Continuous Communication. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 19-29	4	41
230	Sampled-data containment control for double-integrator agents with dynamic leaders with nonzero inputs. <i>Systems and Control Letters</i> , 2020 , 139, 104673	2.4	4
229	Advances in Network Controllability. <i>IEEE Circuits and Systems Magazine</i> , 2019 , 19, 8-32	3.2	42
228	Distributed Continuous-Time and Discrete-Time Optimization With Nonuniform Unbounded Convex Constraint Sets and Nonuniform Stepsizes. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 5148-5155	5.9	37
227	Distributed Energy Resource Coordination Over Time-Varying Directed Communication Networks. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 1124-1134	4	26
226	Solving a system of linear equations: From centralized to distributed algorithms. <i>Annual Reviews in Control</i> , 2019 , 47, 306-322	10.3	20
225	Reducing time headway for platooning of connected vehicles via V2V communication. Transportation Research Part C: Emerging Technologies, 2019 , 102, 87-105	8.4	74
224	Distributed Average Tracking of Physical Second-Order Agents With Heterogeneous Unknown Nonlinear Dynamics Without Constraint on Input Signals. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 1178-1184	5.9	22
223	Continuous-Time Distributed Subgradient Algorithm for Convex Optimization With General Constraints. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 1694-1701	5.9	47
222	Unscented-Transformation-Based Distributed Nonlinear State Estimation: Algorithm, Analysis, and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2019 , 27, 2016-2029	4.8	15

(2018-2019)

221	On the Control of Multi-Agent Systems: A Survey. <i>Foundations and Trends in Systems and Control</i> , 2019 , 6, 339-499	4	33
220	Distributed containment control for first-order and second-order multiagent systems with arbitrarily bounded delays. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 6657-6657	3.6	
219	Distributed Nash Equilibrium Seeking Algorithms for Two-Layer Constrained Non-Cooperative Games 2019 ,		2
218	2019,		4
217	Distributed Average Tracking over Weight-Unbalanced Directed Graphs 2019,		3
216	Some Necessary and Sufficient Conditions for Synchronization of Second-Order Interconnected Networks. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 4379-4387	10.2	7
215	Containment Control for Discrete-Time Multiagent Systems With Communication Delays and Switching Topologies. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3827-3830	10.2	27
214	Continuous-Time Coordination Algorithm for Distributed Convex Optimization Over Weight-Unbalanced Directed Networks. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2019 , 66, 1202-1206	3.5	32
213	Distributed Containment Control of Continuous-Time Multiagent Systems With Nonconvex Control Input Constraints. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 7927-7934	8.9	21
212	Distributed containment control for first-order and second-order multiagent systems with arbitrarily bounded delays. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 1122-1131	3.6	13
211	Distributed Optimization With Nonconvex Velocity Constraints, Nonuniform Position Constraints, and Nonuniform Stepsizes. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2575-2582	5.9	49
210	Designing Distributed Specified-Time Consensus Protocols for Linear Multiagent Systems Over Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2945-2952	5.9	99
209	Differentially Private Consensus With an Event-Triggered Mechanism. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 60-71	4	24
208	Distributed Algorithm to Solve a System of Linear Equations With Unique or Multiple Solutions From Arbitrary Initializations. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 82-93	4	16
207	Multiagent Rendezvous With Shortest Distance to Convex Regions With Empty Intersection: Algorithms and Experiments. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 1026-1034	10.2	9
206	Passive Separation Approach to Adaptive Visual Tracking for Robotic Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2018 , 26, 2232-2241	4.8	16
205	Distributed Coverage Control of Mobile Sensor Networks in Unknown Environment Using Game Theory: Algorithms and Experiments. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1303-1313	4.6	15
204	Appointed-time consensus: Accurate and practical designs. <i>Automatica</i> , 2018 , 89, 425-429	5.7	93

203	Distributed Coordination of Multiple Unknown Euler-Lagrange Systems. <i>IEEE Transactions on Control of Network Systems</i> , 2018 , 5, 55-66	4	42
202	. IEEE Systems Journal, 2018 , 12, 2428-2436	4.3	13
201	Distributed Kalman B ucy Filter With Embedded Dynamic Averaging Algorithm. <i>IEEE Systems Journal</i> , 2018 , 12, 1722-1730	4.3	16
200	Observer-Based Consensus for Multiagent Systems Under Stochastic Sampling Mechanism. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 2328-2338	7.3	23
199	A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 1760-1772	10.2	38
198	Consensus of multi-agent systems with fixed inner connections. <i>International Journal of Robust and Nonlinear Control</i> , 2018 , 28, 154-173	3.6	19
197	. IEEE Transactions on Control Systems Technology, 2018 , 26, 1300-1316	4.8	47
196	Robustness Analysis of Asynchronous Sampled-Data Multiagent Networks With Time-Varying Delays. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2145-2152	5.9	55
195	Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1791-1797	5.9	29
194	Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 3164-3175	10.3	23
193	HIDutput Consensus for Markov Jump Multiagent Systems With Uncertainties. <i>IEEE Transactions on Cybernetics</i> , 2018 ,	10.2	25
192	Distributed Subgradient-Based Multiagent Optimization With More General Step Sizes. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2295-2302	5.9	20
191	. IEEE Transactions on Control of Network Systems, 2018 , 5, 1841-1851	4	11
190	Distributed Consensus of Second-Order Multiagent Systems With Nonconvex Velocity and Control Input Constraints. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1171-1176	5.9	69
189	Platooning of Connected Vehicles With Undirected Topologies: Robustness Analysis and Distributed H-infinity Controller Synthesis. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 1353-1364	6.1	79
188	Convex Optimization via Finite-Time Projected Gradient Flows 2018 ,		1
187	Communication-efficient Distributed Solutions to a System of Linear Equations with Laplacian Sparse Structure 2018 ,		2
186	Distributed rotating consensus of second-order multi-agent systems with nonuniform delays. Systems and Control Letters, 2018, 117, 18-22	2.4	15

(2016-2017)

18	35	Distributed average tracking for double-integrator multi-agent systems with reduced requirement on velocity measurements. <i>Automatica</i> , 2017 , 81, 1-7	5.7	30
18	³ 4	Distributed Velocity-Constrained Consensus of Discrete-Time Multi-Agent Systems With Nonconvex Constraints, Switching Topologies, and Delays. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5788-5794	5.9	100
18	83	Multi-leader multi-follower coordination with cohesion, dispersion, and containment control via proximity graphs. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	14
18	32	A fixed time distributed optimization: A sliding mode perspective 2017,		11
18	31	Distributed solution to linear equations from arbitrary initializations 2017,		4
18	3o	Heterogeneous distributed average tracking using nonsmooth algorithms 2017,		9
17	79	Fully distributed nonlinear state estimation using sensor networks 2017,		1
17	78	Necessary and Sufficient Conditions for Consensus of Second-Order Multiagent Systems Under Directed Topologies Without Global Gain Dependency. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2089-	- 2 6938	50
17	77	Distributed Continuous-Time Convex Optimization With Time-Varying Cost Functions. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 1590-1605	5.9	110
17	76	Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 2239-2253	5.9	168
17	75	Cooperative optimal coordination for distributed energy resources 2017,		2
17	74	Distributed Hitonstrained consensus problem. Systems and Control Letters, 2017, 104, 45-48	2.4	28
17	73	Finite-Time Connectivity-Preserving Consensus of Networked Nonlinear Agents With Unknown Lipschitz Terms. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1700-1705	5.9	56
17	72	Distributed Consensus of Second-Order Multi-Agent Systems With Heterogeneous Unknown Inertias and Control Gains Under a Directed Graph. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2019-2034	5.9	194
17	71	Properties of Composite Laplacian Quadratics and Their Applications in Consensus of Linear Differential Inclusions. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2269-2275	5.9	10
17	70	Distributed Consensus in Networks 2016 , 1-15		6
16	59	Synchronization of Coupled Nonlinear Dynamical Systems: Interplay Between Times of Connectivity and Integral of Lipschitz Gain. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2016 , 63, 391-3	9 35 5	5
16	58	Distributed multi-agent optimization subject to nonidentical constraints and communication delays. <i>Automatica</i> , 2016 , 65, 120-131	5.7	130

167	Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. <i>Automatica</i> , 2016 , 65, 90-97	5.7	110
166	Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs. <i>Automatica</i> , 2016 , 69, 242-249	5.7	262
165	Containment Control of Multiagent Systems With Dynamic Leaders Based on a \$PI^{n}\$ -Type Approach. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 3004-3017	10.2	106
164	Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization. <i>Automatica</i> , 2016 , 68, 132-139	5.7	64
163	Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. <i>Automatica</i> , 2016 , 67, 67-76	5.7	98
162	On Convergence Rate of Leader-Following Consensus of Linear Multi-Agent Systems With Communication Noises. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 3586-3592	5.9	85
161	Distributed minimum weighted norm solution to linear equations associated with weighted inner product 2016 ,		5
160	Controllability and observability of an n-link planar robot with active joints 2016,		2
159	Distributed average tracking for second-order agents with nonlinear dynamics 2016,		9
158	Fully distributed state estimation with multiple model approach 2016,		5
157	On the convergence of distributed estimation of LTV dynamic system with switching directed topologies and time-varying sensing models 2016 ,		6
156	Dynamic modularity approach to adaptive inner/outer loop control of robotic systems 2016 ,		3
155	Leaderfollower consensus of linear multi-agent systems with unknown external disturbances. <i>Systems and Control Letters</i> , 2015 , 82, 64-70	2.4	101
154	Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers. <i>International Journal of Robust and Nonlinear Control</i> , 2015 , 25, 2101	1-32621	103
153	Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2015 , 26, 1885-99	10.3	98
152	Seeking Consensus in Networks of Linear Agents: Communication Noises and Markovian Switching Topologies. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 1374-1379	5.9	104
151	Designing Fully Distributed Consensus Protocols for Linear Multi-Agent Systems With Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 1152-1157	5.9	509
150	Distributed Average Tracking of Networked Euler-Lagrange Systems. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 547-552	5.9	70

(2014-2015)

149	Distributed average tracking for double-integrator agents without using velocity measurements 2015 ,		10
148	Distributed convex optimization of time-varying cost functions for double-integrator systems using nonsmooth algorithms 2015 ,		10
147	Distributed convex optimization of time-varying cost functions with swarm tracking behavior for continuous-time dynamics 2015 ,		7
146	On the consistency and confidence of distributed dynamic state estimation in wireless sensor networks 2015 ,		15
145	Distributed parameter estimation under unreliable directed networks 2015,		2
144	Consensus of linear differential inclusions via composite Laplacian quadratics 2015,		3
143	Distributed Average Tracking for Reference Signals With Bounded Accelerations. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 863-869	5.9	52
142	Adaptive Consensus of Multi-Agent Systems With Unknown Identical Control Directions Based on A Novel Nussbaum-Type Function. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1887-1892	5.9	223
141	Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. <i>Automatica</i> , 2014 , 50, 2648-2656	5.7	126
140	Flocking with a moving leader for multiple uncertain lagrange systems 2014,		6
139	Distributed optimization with the consideration of adaptivity and finite-time convergence 2014,		16
138	An extended proportional-integral control algorithm for distributed average tracking and its applications in Euler-Lagrange systems 2014 ,		7
137	Consensus of second-order heterogeneous multi-agent systems under a directed graph 2014,		22
136	Constrained Consensus in Unbalanced Networks With Communication Delays. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 775-781	5.9	121
135	Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems. <i>Systems and Control Letters</i> , 2014 , 72, 44-52	2.4	33
134	Game theory control solution for sensor coverage problem in unknown environment 2014,		7
133	Consensus of linear multi-agent systems with fully distributed control gains under a general directed graph 2014 ,		10
132	Decentralized consensus for linear multi-agent systems under general directed graphs based on event-triggered/self-triggered strategy 2014 ,		16

131	Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 2438-2457	3.6	168
130	Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. <i>International Journal of Robust and Nonlinear Control</i> , 2013 , 23, 534-547	3.6	332
129	Robust cooperative tracking for multiple non-identical second-order nonlinear systems. <i>Automatica</i> , 2013 , 49, 2363-2372	5.7	110
128	Distributed adaptive coordination for multiple Lagrangian systems under a directed graph without using neighbors velocity information. <i>Automatica</i> , 2013 , 49, 1723-1731	5.7	124
127	Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies. <i>Systems and Control Letters</i> , 2013 , 62, 152-162	2.4	114
126	Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1786-1791	5.9	487
125	An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 427-438	11.9	1279
124	Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 518-523	5.9	319
123	Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. <i>Automatica</i> , 2013 , 49, 1419-1427	5.7	146
122	Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2013 , 60, 2679-2687	3.9	84
121	Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. <i>Automatica</i> , 2013 , 49, 2107-2115	5.7	274
120	Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. <i>Automatica</i> , 2013 , 49, 1986-1995	5.7	386
119	Tracking the average of time-varying nonsmooth signals for double-integrator agents with a fixed topology 2013 ,		1
118	Containment control for networked unknown Lagrangian systems with multiple dynamic leaders under a directed graph 2013 ,		1
117	Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. <i>Automatica</i> , 2012 , 48, 653-659	5.7	389
116	Leader f ollower swarm tracking for networked Lagrange systems. <i>Systems and Control Letters</i> , 2012 , 61, 117-126	2.4	88
115	Distributed discrete-time coordinated tracking with Markovian switching topologies. <i>Systems and Control Letters</i> , 2012 , 61, 766-772	2.4	44
114	Distributed Average Tracking of Multiple Time-Varying Reference Signals With Bounded Derivatives. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 3169-3174	5.9	137

113	Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 33-48	5.9	344
112	Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 1553-1559	5.9	203
111	Distributed constrained consensus in the presence of unbalanced switching graphs and communication delays 2012 ,		7
110	Cooperative control of nonlinear multi-agent systems with only relative position measurements 2012 ,		1
109	Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. <i>Automatica</i> , 2012 , 48, 1586-1597	5.7	353
108	On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. <i>Autonomous Robots</i> , 2012 , 33, 41-68	3	38
107	Distributed shortest distance consensus problem in multi-agent systems 2012 ,		5
106	Distributed subgradient projection algorithm for multi-agent optimization with nonidentical constraints and switching topologies 2012 ,		10
105	Distributed Coordination of Multi-agent Networks. Communications and Control Engineering, 2011,	0.6	409
104	Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 1415-1421	5.9	291
103	Distributed Higher Order Consensus Protocols in Multiagent Dynamical Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2011 , 58, 1924-1932	3.9	210
102	Leaderless and leader-following consensus with communication and input delays under a directed network topology. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 75-88		288
101	Distributed Containment Control for Multiple Autonomous Vehicles With Double-Integrator Dynamics: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2011 , 19, 929-	-938	339
100	Second-order consensus in multi-agent dynamical systems with sampled position data. <i>Automatica</i> , 2011 , 47, 1496-1503	5.7	348
99	Collective rotating motions of second-order multi-agent systems in three-dimensional space. <i>Systems and Control Letters</i> , 2011 , 60, 365-372	2.4	47
98	Consensus of linear multi-agent systems with reduced-order observer-based protocols. <i>Systems and Control Letters</i> , 2011 , 60, 510-516	2.4	156
97	2011,		2
96	Distributed multi-agent coordination: A comparison lemma based approach 2011,		1

95	Finite-time consensus for second-order multi-agent networks with inherent nonlinear dynamics under an undirected fixed graph 2011 ,		17
94	Distributed containment control of linear multi-agent systems with multiple leaders and reduced-order controllers 2011 ,		5
93	Autonomous indoor aerial gripping using a quadrotor 2011 ,		20
92	Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination. <i>IET Control Theory and Applications</i> , 2010 , 4, 806-816	2.5	56
91	Distributed coordinated tracking via a variable structure approach - part II: Swarm tracking 2010,		1
90	Distributed finite-time containment control for multiple Lagrangian systems 2010,		2
89	Multi-agent coordination with cohesion, dispersion, and containment control 2010,		2
88	Stability and convergence analysis of multi-agent consensus with information reuse. <i>International Journal of Control</i> , 2010 , 83, 1081-1092	1.5	21
87	Distributed Cooperative Attitude Synchronization and Tracking for Multiple Rigid Bodies. <i>IEEE Transactions on Control Systems Technology</i> , 2010 , 18, 383-392	4.8	247
86	Distributed coordinated tracking for multiple Euler-Lagrange systems 2010,		9
85	Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information. <i>International Journal of Control</i> , 2010 , 83, 2427-2439	1.5	45
84	Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction. <i>International Journal of Control</i> , 2010 , 83, 506-515	1.5	110
83	Distributed coordination of networked fractional-order systems. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 362-70		190
82	Optimal linear-consensus algorithms: an LQR perspective. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 819-30		188
81	Consensus Tracking Under Directed Interaction Topologies: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2010 , 18, 230-237	4.8	141
80	Discussion on: Consensus of Second-Order Delayed Multi-Agent Systems with Leader-Following European Journal of Control, 2010 , 16, 200-203	2.5	7
70			
79	Distributed coordinated tracking via a variable structure approach - part I: Consensus tracking 2010 ,		1

(2008-2010)

77	Distributed finite-time attitude containment control for multiple rigid bodies. <i>Automatica</i> , 2010 , 46, 2092-2099	5.7	603
76	Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping. <i>Systems and Control Letters</i> , 2010 , 59, 233-240	2.4	115
75	Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. <i>Systems and Control Letters</i> , 2010 , 59, 522-529	2.4	277
74	Surrounding control in cooperative agent networks. Systems and Control Letters, 2010, 59, 704-712	2.4	52
73	Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. <i>International Journal of Robust and Nonlinear Control</i> , 2010 , 20, 987-1000	3.6	181
72	Distributed coordination of fractional-order systems with extensions to directed dynamic networks and absolute/relative damping 2009 ,		4
71	LQR-based optimal linear consensus algorithms 2009 ,		11
70	Containment control with multiple stationary or dynamic leaders under a directed interaction graph 2009 ,		87
69	Sampled-data formation control under dynamic directed interaction 2009,		11
68	Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. <i>Automatica</i> , 2009 , 45, 1299-1305	5.7	127
67	Decentralized cooperative attitude tracking using Modified Rodriguez Parameters 2009,		3
66	Minimum-energy multicast tree in cognitive radio networks 2009 ,		9
65	Distributed leaderless consensus algorithms for networked Euler Lagrange systems. <i>International Journal of Control</i> , 2009 , 82, 2137-2149	1.5	325
64	Collective Motion From Consensus With Cartesian Coordinate Coupling. <i>IEEE Transactions on Automatic Control</i> , 2009 , 54, 1330-1335	5.9	85
63	Collective motion from consensus with Cartesian coordinate coupling - Part II: Double-integrator dynamics 2008 ,		6
62	Distributed Discrete-time Consensus with a Time-varying Reference State 2008,		1
61	Distributed coordination algorithms for multiple fractional-order systems 2008,		23
60	Experimental Validation of Consensus Algorithms for Multivehicle Cooperative Control. <i>IEEE Transactions on Control Systems Technology</i> , 2008 , 16, 745-752	4.8	58

59	Consensus tracking under directed interaction topologies: Algorithms and experiments 2008,		7
58	Decentralization of Virtual Structures in Formation Control of Multiple Vehicle Systems via Consensus Strategies. <i>European Journal of Control</i> , 2008 , 14, 93-103	2.5	17
57	On Consensus Algorithms for Double-Integrator Dynamics. <i>IEEE Transactions on Automatic Control</i> , 2008 , 53, 1503-1509	5.9	921
56	Convergence of sampled-data consensus algorithms for double-integrator dynamics 2008,		35
55	Distributed Consensus in Multi-vehicle Cooperative Control. <i>Communications and Control Engineering</i> , 2008 ,	0.6	1193
54	Collective motion from consensus with Cartesian coordinate coupling - Part I: Single-integrator kinematics 2008 ,		16
53	Band-reconfigurable Multi-UAV-based Cooperative Remote Sensing for Real-time Water Management and Distributed Irrigation Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 11744-11749		42
52	Simulation and Experimental Study of Consensus Algorithms for Multiple Mobile Robots with Information Feedback. <i>Intelligent Automation and Soft Computing</i> , 2008 , 14, 73-87	2.6	8
51	Multi-Agent Consensus Using Both Current and Outdated States. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 2874-2879		9
50	Distributed coordination architecture for multi-robot formation control. <i>Robotics and Autonomous Systems</i> , 2008 , 56, 324-333	3.5	341
49	Synchronization of coupled harmonic oscillators with local interaction. <i>Automatica</i> , 2008 , 44, 3195-3200) 5.7	202
48	Spectrum Opportunity Detection: How Good Is Listen-before-Talk?. <i>Conference Record of the Asilomar Conference on Signals, Systems and Computers</i> , 2007 ,	0.3	2
47	Formation Keeping and Attitude Alignment for Multiple Spacecraft Through Local Interactions. Journal of Guidance, Control, and Dynamics, 2007, 30, 633-638	2.1	165
46	On consensus algorithms for double-integrator dynamics 2007,		21
45	Consensus Seeking in Multi-vehicle Systems with a Time-varying Reference State. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	26
44	Second-order Consensus Algorithm with Extensions to Switching Topologies and Reference Models. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	53
43	Consensus strategies for cooperative control of vehicle formations. <i>IET Control Theory and Applications</i> , 2007 , 1, 505-512	2.5	560
42	Trajectory tracking control for a miniature fixed-wing unmanned air vehicle. <i>International Journal of Systems Science</i> , 2007 , 38, 361-368	2.3	18

(2006-2007)

41	Distributed attitude alignment in spacecraft formation flying. <i>International Journal of Adaptive Control and Signal Processing</i> , 2007 , 21, 95-113	2.8	186
40	Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 2007, 56, 474	-483	511
39	Distributed multi-vehicle coordinated control via local information exchange. <i>International Journal of Robust and Nonlinear Control</i> , 2007 , 17, 1002-1033	3.6	934
38	On Constrained Nonlinear Tracking Control of a Small Fixed-wing UAV. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2007 , 48, 525-537	2.9	27
37	Consensus of information in distributed control of a diffusion process using centroidal Voronoi tessellations 2007 ,		4
36	High-Order and Model Reference Consensus Algorithms in Cooperative Control of MultiVehicle Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2007 , 129, 678-688	1.6	276
35	Experiments in Consensus-based Distributed Cooperative Control of Multiple Mobile Robots 2007,		14
34	Experimental implementation and validation of consensus algorithms on a mobile actuator and sensor network platform 2007 ,		1
33	Synchronized Multiple Spacecraft Rotations: A Revisit in the Context of Consensus Building. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	8
32	Distributed Consensus Algorithms and Their Applications in Multi-vehicle Cooperative Control 2007 ,		22
31	Information consensus in multivehicle cooperative control. IEEE Control Systems, 2007, 27, 71-82	2.9	1925
30	A Unified Formation Control Scheme with a Single or Multiple Leaders. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	14
29	Experimental validation of an autonomous control system on a mobile robot platform. <i>IET Control Theory and Applications</i> , 2007 , 1, 1621-1629	2.5	14
28	Distributed attitude synchronization for multiple rigid bodies with euler-lagrange equations of motion 2007 ,		11
27	A Study of Grouping Effect On Mobile Actuator Sensor Networks for Distributed Feedback Control of Diffusion Process Using Central Voronoi Tessellations 2006 ,		10
26	Distributed attitude consensus among multiple networked spacecraft 2006,		13
25	Leaderless Formation Control for Multiple Autonomous Vehicles 2006,		9
24	Rendezvous Problem in Multi-vehicle Systems: Information Relay and Local Information Based Strategies 2006 ,		4

23	Fractional Horsepower Dynamometer - A General Purpose Hardware-In-The-Loop Real-Time Simulation Platform for Nonlinear Control Research and Education 2006 ,		22
22	Consensus based formation control strategies for multi-vehicle systems 2006,		52
21	Consensus seeking in multiagent systems under dynamically changing interaction topologies. <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 655-661	5.9	4017
20	Nonlinear Trajectory Tracking for Fixed Wing UAVs via Backstepping and Parameter Adaptation 2005 ,		23
19	Second-order Consensus Protocols in Multiple Vehicle Systems with Local Interactions 2005,		76
18	Consensus of information under dynamically changing interaction topologies 2004,		21
17	Constrained nonlinear tracking control for small fixed-wing unmanned air vehicles 2004,		5
16	Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach. <i>Journal of Guidance, Control, and Dynamics</i> , 2004 , 27, 73-82	2.1	403
15	Coordination Variables and Consensus Building in Multiple Vehicle Systems. <i>Lecture Notes in Control and Information Sciences</i> , 2004 , 171-188	0.5	140
14	Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. <i>IEEE Transactions on Control Systems Technology</i> , 2004 , 12, 706-716	4.8	164
13	Autonomous Vehicle Technologies for Small Fixed Wing UAVs 2003,		35
12	Virtual Structure Based Spacecraft Formation Control with Formation Feedback 2002,		63
11	Use of neural fuzzy networks with mixed genetic/gradient algorithm in automated vehicle control. <i>IEEE Transactions on Industrial Electronics</i> , 1999 , 46, 1090-1102	8.9	30
10	Blind carrier phase tracking with guaranteed global convergence. <i>IEEE Transactions on Signal Processing</i> , 1997 , 45, 1889-1894	4.8	13
9	Multi-agent Kalman consensus with relative uncertainty		49
8	Consensus algorithms are input-to-state stable		40
7	Decentralization of Coordination Variables in Multi-vehicle Systems		1
6	High-Order Consensus Algorithms in Cooperative Vehicle Systems		32

LIST OF PUBLICATIONS

5	Cooperative Control Design Strategies with Local Interactions	4
4	A decentralized scheme for spacecraft formation flying via the virtual structure approach	13
3	Satisficing control for multi-agent formation maneuvers	3
2	Continuous platooning: a new evolutionary operating concept for automated highway systems	6
1	Autonomous indoor aerial gripping using a quadrotor	46