Wei Ren

List of Publications by Citations

Source: https://exaly.com/author-pdf/3745259/wei-ren-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 274
papers
 28,456
citations
 75
h-index
 167
g-index

 297
ext. papers
 35,865
ext. citations
 4.4
avg, IF
 8.03
L-index

#	Paper	IF	Citations
274	Consensus seeking in multiagent systems under dynamically changing interaction topologies. <i>IEEE Transactions on Automatic Control</i> , 2005 , 50, 655-661	5.9	4017
273	Information consensus in multivehicle cooperative control. <i>IEEE Control Systems</i> , 2007 , 27, 71-82	2.9	1925
272	An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination. <i>IEEE Transactions on Industrial Informatics</i> , 2013 , 9, 427-438	11.9	1279
271	Distributed Consensus in Multi-vehicle Cooperative Control. <i>Communications and Control Engineering</i> , 2008 ,	0.6	1193
270	Distributed multi-vehicle coordinated control via local information exchange. <i>International Journal of Robust and Nonlinear Control</i> , 2007 , 17, 1002-1033	3.6	934
269	On Consensus Algorithms for Double-Integrator Dynamics. <i>IEEE Transactions on Automatic Control</i> , 2008 , 53, 1503-1509	5.9	921
268	Distributed finite-time attitude containment control for multiple rigid bodies. <i>Automatica</i> , 2010 , 46, 2092-2099	5.7	603
267	Consensus strategies for cooperative control of vehicle formations. <i>IET Control Theory and Applications</i> , 2007 , 1, 505-512	2.5	560
266	Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 2007, 56, 474	-483	511
265	Designing Fully Distributed Consensus Protocols for Linear Multi-Agent Systems With Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 1152-1157	5.9	509
264	Consensus of Multi-Agent Systems With General Linear and Lipschitz Nonlinear Dynamics Using Distributed Adaptive Protocols. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 1786-1791	5.9	487
263	Distributed Coordination of Multi-agent Networks. Communications and Control Engineering, 2011,	0.6	409
262	Decentralized Scheme for Spacecraft Formation Flying via the Virtual Structure Approach. <i>Journal of Guidance, Control, and Dynamics</i> , 2004 , 27, 73-82	2.1	403
261	Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph. <i>Automatica</i> , 2012 , 48, 653-659	5.7	389
260	Distributed consensus of linear multi-agent systems with adaptive dynamic protocols. <i>Automatica</i> , 2013 , 49, 1986-1995	5.7	386
259	Distributed containment control with multiple stationary or dynamic leaders in fixed and switching directed networks. <i>Automatica</i> , 2012 , 48, 1586-1597	5.7	353
258	Second-order consensus in multi-agent dynamical systems with sampled position data. <i>Automatica</i> , 2011 , 47, 1496-1503	5.7	348

(2016-2012)

257	Distributed Coordinated Tracking With Reduced Interaction via a Variable Structure Approach. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 33-48	5.9	344
256	Distributed coordination architecture for multi-robot formation control. <i>Robotics and Autonomous Systems</i> , 2008 , 56, 324-333	3.5	341
255	Distributed Containment Control for Multiple Autonomous Vehicles With Double-Integrator Dynamics: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2011 , 19, 929-5	938	339
254	Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. <i>International Journal of Robust and Nonlinear Control</i> , 2013 , 23, 534-547	3.6	332
253	Distributed leaderless consensus algorithms for networked Euler Dagrange systems. <i>International Journal of Control</i> , 2009 , 82, 2137-2149	1.5	325
252	Distributed Tracking Control for Linear Multiagent Systems With a Leader of Bounded Unknown Input. <i>IEEE Transactions on Automatic Control</i> , 2013 , 58, 518-523	5.9	319
251	Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems. <i>IEEE Transactions on Automatic Control</i> , 2011 , 56, 1415-1421	5.9	291
250	Leaderless and leader-following consensus with communication and input delays under a directed network topology. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2011 , 41, 75-88		288
249	Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking. <i>Systems and Control Letters</i> , 2010 , 59, 522-529	2.4	277
248	High-Order and Model Reference Consensus Algorithms in Cooperative Control of MultiVehicle Systems. <i>Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME</i> , 2007 , 129, 678-688	1.6	276
247	Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics. <i>Automatica</i> , 2013 , 49, 2107-2115	5.7	274
246	Decentralized event-triggered consensus for linear multi-agent systems under general directed graphs. <i>Automatica</i> , 2016 , 69, 242-249	5.7	262
245	Distributed Cooperative Attitude Synchronization and Tracking for Multiple Rigid Bodies. <i>IEEE Transactions on Control Systems Technology</i> , 2010 , 18, 383-392	4.8	247
244	Adaptive Consensus of Multi-Agent Systems With Unknown Identical Control Directions Based on A Novel Nussbaum-Type Function. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 1887-1892	5.9	223
243	Distributed Higher Order Consensus Protocols in Multiagent Dynamical Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2011 , 58, 1924-1932	3.9	210
242	Distributed Containment Control with Multiple Dynamic Leaders for Double-Integrator Dynamics Using Only Position Measurements. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 1553-1559	5.9	203
241	Synchronization of coupled harmonic oscillators with local interaction. <i>Automatica</i> , 2008 , 44, 3195-3200	5.7	202
240	Distributed Consensus of Second-Order Multi-Agent Systems With Heterogeneous Unknown Inertias and Control Gains Under a Directed Graph. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2019-2034	5.9	194

239	Distributed coordination of networked fractional-order systems. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 362-70		190
238	Optimal linear-consensus algorithms: an LQR perspective. <i>IEEE Transactions on Systems, Man, and Cybernetics</i> , 2010 , 40, 819-30		188
237	Distributed attitude alignment in spacecraft formation flying. <i>International Journal of Adaptive Control and Signal Processing</i> , 2007 , 21, 95-113	2.8	186
236	Multi-vehicle coordination for double-integrator dynamics under fixed undirected/directed interaction in a sampled-data setting. <i>International Journal of Robust and Nonlinear Control</i> , 2010 , 20, 987-1000	3.6	181
235	Distributed Continuous-Time Optimization: Nonuniform Gradient Gains, Finite-Time Convergence, and Convex Constraint Set. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 2239-2253	5.9	168
234	Distributed consensus of multi-agent systems with general linear node dynamics and intermittent communications. <i>International Journal of Robust and Nonlinear Control</i> , 2014 , 24, 2438-2457	3.6	168
233	Formation Keeping and Attitude Alignment for Multiple Spacecraft Through Local Interactions. Journal of Guidance, Control, and Dynamics, 2007, 30, 633-638	2.1	165
232	Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints. <i>IEEE Transactions on Control Systems Technology</i> , 2004 , 12, 706-716	4.8	164
231	Consensus of linear multi-agent systems with reduced-order observer-based protocols. <i>Systems and Control Letters</i> , 2011 , 60, 510-516	2.4	156
230	Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements. <i>Automatica</i> , 2013 , 49, 1419-1427	5.7	146
229	Consensus Tracking Under Directed Interaction Topologies: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2010 , 18, 230-237	4.8	141
228	Coordination Variables and Consensus Building in Multiple Vehicle Systems. <i>Lecture Notes in Control and Information Sciences</i> , 2004 , 171-188	0.5	140
227	Distributed Average Tracking of Multiple Time-Varying Reference Signals With Bounded Derivatives. <i>IEEE Transactions on Automatic Control</i> , 2012 , 57, 3169-3174	5.9	137
226	Distributed multi-agent optimization subject to nonidentical constraints and communication delays. <i>Automatica</i> , 2016 , 65, 120-131	5.7	130
225	Distributed discrete-time coordinated tracking with a time-varying reference state and limited communication. <i>Automatica</i> , 2009 , 45, 1299-1305	5.7	127
224	Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics. <i>Automatica</i> , 2014 , 50, 2648-2656	5.7	126
223	Distributed adaptive coordination for multiple Lagrangian systems under a directed graph without using neighbors Ivelocity information. <i>Automatica</i> , 2013 , 49, 1723-1731	5.7	124
222	Constrained Consensus in Unbalanced Networks With Communication Delays. <i>IEEE Transactions on Automatic Control</i> , 2014 , 59, 775-781	5.9	121

(2016-2010)

221	Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping. <i>Systems and Control Letters</i> , 2010 , 59, 233-240	2.4	115
220	Consensus for multi-agent systems with inherent nonlinear dynamics under directed topologies. <i>Systems and Control Letters</i> , 2013 , 62, 152-162	2.4	114
219	Event-triggered zero-gradient-sum distributed consensus optimization over directed networks. <i>Automatica</i> , 2016 , 65, 90-97	5.7	110
218	Robust cooperative tracking for multiple non-identical second-order nonlinear systems. <i>Automatica</i> , 2013 , 49, 2363-2372	5.7	110
217	Distributed Continuous-Time Convex Optimization With Time-Varying Cost Functions. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 1590-1605	5.9	110
216	Sampled-data discrete-time coordination algorithms for double-integrator dynamics under dynamic directed interaction. <i>International Journal of Control</i> , 2010 , 83, 506-515	1.5	110
215	Containment Control of Multiagent Systems With Dynamic Leaders Based on a \$PI^{n}\$ -Type Approach. <i>IEEE Transactions on Cybernetics</i> , 2016 , 46, 3004-3017	10.2	106
214	Seeking Consensus in Networks of Linear Agents: Communication Noises and Markovian Switching Topologies. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 1374-1379	5.9	104
213	Containment control of linear multi-agent systems with multiple leaders of bounded inputs using distributed continuous controllers. <i>International Journal of Robust and Nonlinear Control</i> , 2015 , 25, 2101	-2921	103
212	Leader f ollower consensus of linear multi-agent systems with unknown external disturbances. <i>Systems and Control Letters</i> , 2015 , 82, 64-70	2.4	101
211	Distributed Velocity-Constrained Consensus of Discrete-Time Multi-Agent Systems With Nonconvex Constraints, Switching Topologies, and Delays. <i>IEEE Transactions on Automatic Control</i> , 2017 , 62, 5788-5794	5.9	100
210	Designing Distributed Specified-Time Consensus Protocols for Linear Multiagent Systems Over Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2945-2952	5.9	99
209	Distributed Containment Control for Multiple Unknown Second-Order Nonlinear Systems With Application to Networked Lagrangian Systems. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2015 , 26, 1885-99	10.3	98
208	Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. <i>Automatica</i> , 2016 , 67, 67-76	5.7	98
208	Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. <i>Automatica</i> , 2016 , 67, 67-76	5·7 5·7	98 93
	Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. <i>Automatica</i> , 2016 , 67, 67-76		
207	Fully distributed flocking with a moving leader for Lagrange networks with parametric uncertainties. <i>Automatica</i> , 2016 , 67, 67-76 Appointed-time consensus: Accurate and practical designs. <i>Automatica</i> , 2018 , 89, 425-429 Leaderfollower swarm tracking for networked Lagrange systems. <i>Systems and Control Letters</i> ,	5.7	93

202	Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2013 , 60, 2679-2687	3.9	84
201	Platooning of Connected Vehicles With Undirected Topologies: Robustness Analysis and Distributed H-infinity Controller Synthesis. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2018 , 19, 1353-1364	6.1	79
200	Second-order Consensus Protocols in Multiple Vehicle Systems with Local Interactions 2005,		76
199	Reducing time headway for platooning of connected vehicles via V2V communication. Transportation Research Part C: Emerging Technologies, 2019 , 102, 87-105	8.4	74
198	Distributed Average Tracking of Networked Euler-Lagrange Systems. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 547-552	5.9	70
197	Distributed Consensus of Second-Order Multiagent Systems With Nonconvex Velocity and Control Input Constraints. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1171-1176	5.9	69
196	Cooperative control of linear multi-agent systems via distributed output regulation and transient synchronization. <i>Automatica</i> , 2016 , 68, 132-139	5.7	64
195	Virtual Structure Based Spacecraft Formation Control with Formation Feedback 2002,		63
194	Experimental Validation of Consensus Algorithms for Multivehicle Cooperative Control. <i>IEEE Transactions on Control Systems Technology</i> , 2008 , 16, 745-752	4.8	58
193	Finite-Time Connectivity-Preserving Consensus of Networked Nonlinear Agents With Unknown Lipschitz Terms. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 1700-1705	5.9	56
192	Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination. <i>IET Control Theory and Applications</i> , 2010 , 4, 806-816	2.5	56
191	Robustness Analysis of Asynchronous Sampled-Data Multiagent Networks With Time-Varying Delays. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2145-2152	5.9	55
190	Second-order Consensus Algorithm with Extensions to Switching Topologies and Reference Models. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	53
189	Distributed Average Tracking for Reference Signals With Bounded Accelerations. <i>IEEE Transactions on Automatic Control</i> , 2015 , 60, 863-869	5.9	52
188	Surrounding control in cooperative agent networks. Systems and Control Letters, 2010, 59, 704-712	2.4	52
187	Consensus based formation control strategies for multi-vehicle systems 2006,		52
186	Necessary and Sufficient Conditions for Consensus of Second-Order Multiagent Systems Under Directed Topologies Without Global Gain Dependency. <i>IEEE Transactions on Cybernetics</i> , 2017 , 47, 2089	9- 2098	50

185	Multi-agent Kalman consensus with relative uncertainty		49
184	Distributed Optimization With Nonconvex Velocity Constraints, Nonuniform Position Constraints, and Nonuniform Stepsizes. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 2575-2582	5.9	49
183	. IEEE Transactions on Control Systems Technology, 2018 , 26, 1300-1316	4.8	47
182	Continuous-Time Distributed Subgradient Algorithm for Convex Optimization With General Constraints. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 1694-1701	5.9	47
181	Collective rotating motions of second-order multi-agent systems in three-dimensional space. <i>Systems and Control Letters</i> , 2011 , 60, 365-372	2.4	47
180	Autonomous indoor aerial gripping using a quadrotor		46
179	Decentralised cooperative attitude tracking using modified Rodriguez parameters based on relative attitude information. <i>International Journal of Control</i> , 2010 , 83, 2427-2439	1.5	45
178	Distributed discrete-time coordinated tracking with Markovian switching topologies. <i>Systems and Control Letters</i> , 2012 , 61, 766-772	2.4	44
177	Advances in Network Controllability. IEEE Circuits and Systems Magazine, 2019, 19, 8-32	3.2	42
176	Distributed Coordination of Multiple Unknown Euler-Lagrange Systems. <i>IEEE Transactions on Control of Network Systems</i> , 2018 , 5, 55-66	4	42
175	Multi-Agent Consensus Using Both Current and Outdated States with Fixed and Undirected Interaction. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2010 , 58, 95-106	2.9	42
174	Band-reconfigurable Multi-UAV-based Cooperative Remote Sensing for Real-time Water Management and Distributed Irrigation Control. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 11744-11749		42
173	Finite-Time Consensus for Linear Multiagent Systems via Event-Triggered Strategy Without Continuous Communication. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 19-29	4	41
172	Consensus algorithms are input-to-state stable		40
171	Cooperation of Multiple Connected Vehicles at Unsignalized Intersections: Distributed Observation, Optimization, and Control. <i>IEEE Transactions on Industrial Electronics</i> , 2020 , 67, 10744-107	′5 ⁸ .9	40
170	A Connection Between Dynamic Region-Following Formation Control and Distributed Average Tracking. <i>IEEE Transactions on Cybernetics</i> , 2018 , 48, 1760-1772	10.2	38
169	On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. <i>Autonomous Robots</i> , 2012 , 33, 41-68	3	38
168	Distributed Continuous-Time and Discrete-Time Optimization With Nonuniform Unbounded Convex Constraint Sets and Nonuniform Stepsizes. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 5148-5155	5.9	37

167	Convergence of sampled-data consensus algorithms for double-integrator dynamics 2008,		35
166	Autonomous Vehicle Technologies for Small Fixed Wing UAVs 2003,		35
165	On the Control of Multi-Agent Systems: A Survey. <i>Foundations and Trends in Systems and Control</i> , 2019 , 6, 339-499	4	33
164	Fully distributed adaptive sliding-mode controller design for containment control of multiple Lagrangian systems. <i>Systems and Control Letters</i> , 2014 , 72, 44-52	2.4	33
163	Edge-Based Finite-Time Protocol Analysis With Final Consensus Value and Settling Time Estimations. <i>IEEE Transactions on Cybernetics</i> , 2020 , 50, 1450-1459	10.2	33
162	High-Order Consensus Algorithms in Cooperative Vehicle Systems		32
161	Continuous-Time Coordination Algorithm for Distributed Convex Optimization Over Weight-Unbalanced Directed Networks. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2019 , 66, 1202-1206	3.5	32
160	Distributed average tracking for double-integrator multi-agent systems with reduced requirement on velocity measurements. <i>Automatica</i> , 2017 , 81, 1-7	5.7	30
159	Use of neural fuzzy networks with mixed genetic/gradient algorithm in automated vehicle control. <i>IEEE Transactions on Industrial Electronics</i> , 1999 , 46, 1090-1102	8.9	30
158	Synchronization of Coupled Dynamical Systems: Tolerance to Weak Connectivity and Arbitrarily Bounded Time-Varying Delays. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 1791-1797	5.9	29
157	Distributed Resource Allocation Over Directed Graphs via Continuous-Time Algorithms. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2021 , 51, 1097-1106	7.3	29
156	Distributed Hitonstrained consensus problem. Systems and Control Letters, 2017, 104, 45-48	2.4	28
155	On Constrained Nonlinear Tracking Control of a Small Fixed-wing UAV. <i>Journal of Intelligent and Robotic Systems: Theory and Applications</i> , 2007 , 48, 525-537	2.9	27
154	Containment Control for Discrete-Time Multiagent Systems With Communication Delays and Switching Topologies. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 3827-3830	10.2	27
153	Distributed Energy Resource Coordination Over Time-Varying Directed Communication Networks. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 1124-1134	4	26
152	Consensus Seeking in Multi-vehicle Systems with a Time-varying Reference State. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	26
151	Practical output synchronization for asynchronously switched multi-agent systems with adaption to fast-switching perturbations. <i>Automatica</i> , 2020 , 116, 108917	5.7	25
150	HIDutput Consensus for Markov Jump Multiagent Systems With Uncertainties. <i>IEEE Transactions on Cybernetics</i> , 2018 ,	10.2	25

(2018-2019)

149	Differentially Private Consensus With an Event-Triggered Mechanism. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 60-71	4	24	
148	Observer-Based Consensus for Multiagent Systems Under Stochastic Sampling Mechanism. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 2328-2338	7.3	23	
147	Distributed Adaptive Finite-Time Approach for Formation-Containment Control of Networked Nonlinear Systems Under Directed Topology. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2018 , 29, 3164-3175	10.3	23	
146	Distributed coordination algorithms for multiple fractional-order systems 2008,		23	
145	Nonlinear Trajectory Tracking for Fixed Wing UAVs via Backstepping and Parameter Adaptation 2005 ,		23	
144	Distributed Average Tracking of Physical Second-Order Agents With Heterogeneous Unknown Nonlinear Dynamics Without Constraint on Input Signals. <i>IEEE Transactions on Automatic Control</i> , 2019 , 64, 1178-1184	5.9	22	
143	Consensus of second-order heterogeneous multi-agent systems under a directed graph 2014,		22	
142	Distributed Consensus Algorithms and Their Applications in Multi-vehicle Cooperative Control 2007 ,		22	
141	Fractional Horsepower Dynamometer - A General Purpose Hardware-In-The-Loop Real-Time Simulation Platform for Nonlinear Control Research and Education 2006 ,		22	
140	Stability and convergence analysis of multi-agent consensus with information reuse. <i>International Journal of Control</i> , 2010 , 83, 1081-1092	1.5	21	
139	On consensus algorithms for double-integrator dynamics 2007,		21	
138	Consensus of information under dynamically changing interaction topologies 2004,		21	
137	Distributed Containment Control of Continuous-Time Multiagent Systems With Nonconvex Control Input Constraints. <i>IEEE Transactions on Industrial Electronics</i> , 2019 , 66, 7927-7934	8.9	21	
136	Solving a system of linear equations: From centralized to distributed algorithms. <i>Annual Reviews in Control</i> , 2019 , 47, 306-322	10.3	20	
135	Autonomous indoor aerial gripping using a quadrotor 2011 ,		20	
134	Distributed Adaptive Finite-Time Consensus for Second-Order Multiagent Systems With Mismatched Disturbances Under Directed Networks. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 1347-	13 ¹⁰ .2	20	
133	Distributed Subgradient-Based Multiagent Optimization With More General Step Sizes. <i>IEEE Transactions on Automatic Control</i> , 2018 , 63, 2295-2302	5.9	20	
132	Consensus of multi-agent systems with fixed inner connections. <i>International Journal of Robust and Nonlinear Control</i> , 2018 , 28, 154-173	3.6	19	

131	Distributed Time-Varying Convex Optimization for a Class of Nonlinear Multiagent Systems. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 801-808	5.9	19
130	Trajectory tracking control for a miniature fixed-wing unmanned air vehicle. <i>International Journal of Systems Science</i> , 2007 , 38, 361-368	2.3	18
129	Finite-time consensus for second-order multi-agent networks with inherent nonlinear dynamics under an undirected fixed graph 2011 ,		17
128	Decentralization of Virtual Structures in Formation Control of Multiple Vehicle Systems via Consensus Strategies. <i>European Journal of Control</i> , 2008 , 14, 93-103	2.5	17
127	Passive Separation Approach to Adaptive Visual Tracking for Robotic Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2018 , 26, 2232-2241	4.8	16
126	Distributed Kalman B ucy Filter With Embedded Dynamic Averaging Algorithm. <i>IEEE Systems Journal</i> , 2018 , 12, 1722-1730	4.3	16
125	Distributed optimization with the consideration of adaptivity and finite-time convergence 2014 ,		16
124	Decentralized consensus for linear multi-agent systems under general directed graphs based on event-triggered/self-triggered strategy 2014 ,		16
123	Collective motion from consensus with Cartesian coordinate coupling - Part I: Single-integrator kinematics 2008 ,		16
122	Distributed Algorithm to Solve a System of Linear Equations With Unique or Multiple Solutions From Arbitrary Initializations. <i>IEEE Transactions on Control of Network Systems</i> , 2019 , 6, 82-93	4	16
121	Distributed Coverage Control of Mobile Sensor Networks in Unknown Environment Using Game Theory: Algorithms and Experiments. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1303-1313	4.6	15
120	Unscented-Transformation-Based Distributed Nonlinear State Estimation: Algorithm, Analysis, and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2019 , 27, 2016-2029	4.8	15
119	On the consistency and confidence of distributed dynamic state estimation in wireless sensor networks 2015 ,		15
118	Design of Distributed Event-Triggered Average Tracking Algorithms for Homogeneous and Heterogeneous Multi-Agent Systems. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	15
117	Distributed rotating consensus of second-order multi-agent systems with nonuniform delays. <i>Systems and Control Letters</i> , 2018 , 117, 18-22	2.4	15
116	Multi-leader multi-follower coordination with cohesion, dispersion, and containment control via proximity graphs. <i>Science China Information Sciences</i> , 2017 , 60, 1	3.4	14
115	Experiments in Consensus-based Distributed Cooperative Control of Multiple Mobile Robots 2007,		14
114	A Unified Formation Control Scheme with a Single or Multiple Leaders. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	14

(2012-2007)

113	Experimental validation of an autonomous control system on a mobile robot platform. <i>IET Control Theory and Applications</i> , 2007 , 1, 1621-1629	2.5	14	
112	. IEEE Systems Journal, 2018 , 12, 2428-2436	4.3	13	
111	Blind carrier phase tracking with guaranteed global convergence. <i>IEEE Transactions on Signal Processing</i> , 1997 , 45, 1889-1894	4.8	13	•
110	Distributed attitude consensus among multiple networked spacecraft 2006,		13	
109	A decentralized scheme for spacecraft formation flying via the virtual structure approach		13	
108	Sign projected gradient flow: A continuous-time approach to convex optimization with linear equality constraints. <i>Automatica</i> , 2020 , 120, 109156	5.7	13	
107	Distributed containment control for first-order and second-order multiagent systems with arbitrarily bounded delays. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 1122-1131	3.6	13	
106	A fixed time distributed optimization: A sliding mode perspective 2017 ,		11	
105	LQR-based optimal linear consensus algorithms 2009,		11	
104	Sampled-data formation control under dynamic directed interaction 2009,		11	
103	Distributed attitude synchronization for multiple rigid bodies with euler-lagrange equations of motion 2007 ,		11	
102	Finite-Horizon H Fault-Tolerant Constrained Consensus for Multiagent Systems With Communication Delays. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 416-426	10.2	11	
101	. IEEE Transactions on Control of Network Systems, 2018 , 5, 1841-1851	4	11	
100	Properties of Composite Laplacian Quadratics and Their Applications in Consensus of Linear Differential Inclusions. <i>IEEE Transactions on Automatic Control</i> , 2016 , 61, 2269-2275	5.9	10	
99	Distributed average tracking for double-integrator agents without using velocity measurements 2015 ,		10	
98	Distributed convex optimization of time-varying cost functions for double-integrator systems using nonsmooth algorithms 2015 ,		10	
97	Consensus of linear multi-agent systems with fully distributed control gains under a general directed graph 2014 ,		10	
96	Distributed subgradient projection algorithm for multi-agent optimization with nonidentical constraints and switching topologies 2012 ,		10	

95	A Study of Grouping Effect On Mobile Actuator Sensor Networks for Distributed Feedback Control of Diffusion Process Using Central Voronoi Tessellations 2006 ,		10
94	Heterogeneous distributed average tracking using nonsmooth algorithms 2017,		9
93	Distributed coordinated tracking for multiple Euler-Lagrange systems 2010,		9
92	Minimum-energy multicast tree in cognitive radio networks 2009 ,		9
91	Multi-Agent Consensus Using Both Current and Outdated States. <i>IFAC Postprint Volumes IPPV / International Federation of Automatic Control</i> , 2008 , 41, 2874-2879		9
90	Leaderless Formation Control for Multiple Autonomous Vehicles 2006,		9
89	Distributed average tracking for second-order agents with nonlinear dynamics 2016,		9
88	Multiagent Rendezvous With Shortest Distance to Convex Regions With Empty Intersection: Algorithms and Experiments. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 1026-1034	10.2	9
87	Simulation and Experimental Study of Consensus Algorithms for Multiple Mobile Robots with Information Feedback. <i>Intelligent Automation and Soft Computing</i> , 2008 , 14, 73-87	2.6	8
86	Synchronized Multiple Spacecraft Rotations: A Revisit in the Context of Consensus Building. <i>Proceedings of the American Control Conference</i> , 2007 ,	1.2	8
85	An extended proportional-integral control algorithm for distributed average tracking and its applications in Euler-Lagrange systems 2014 ,		7
84	Distributed convex optimization of time-varying cost functions with swarm tracking behavior for continuous-time dynamics 2015 ,		7
83	Game theory control solution for sensor coverage problem in unknown environment 2014,		7
82	Distributed constrained consensus in the presence of unbalanced switching graphs and communication delays 2012 ,		7
81	Discussion on: Consensus of Second-Order Delayed Multi-Agent Systems with Leader-Following European Journal of Control, 2010 , 16, 200-203	2.5	7
80	Consensus tracking under directed interaction topologies: Algorithms and experiments 2008,		7
79	Continuous-time distributed Nash equilibrium seeking algorithms for non-cooperative constrained games. <i>Automatica</i> , 2021 , 127, 109535	5.7	7
78	Some Necessary and Sufficient Conditions for Synchronization of Second-Order Interconnected Networks. <i>IEEE Transactions on Cybernetics</i> , 2019 , 49, 4379-4387	10.2	7

(2021-2021)

77	Distributed economic dispatch via a predictive scheme: Heterogeneous delays and privacy preservation. <i>Automatica</i> , 2021 , 123, 109356	5.7	7	
76	Differentially Private Consensus With Quantized Communication. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4075-4088	10.2	6	
75	Distributed Consensus in Networks 2016 , 1-15		6	
74	Flocking with a moving leader for multiple uncertain lagrange systems 2014,		6	
73	Collective motion from consensus with Cartesian coordinate coupling - Part II: Double-integrator dynamics 2008 ,		6	
72	Continuous platooning: a new evolutionary operating concept for automated highway systems		6	
71	On the convergence of distributed estimation of LTV dynamic system with switching directed topologies and time-varying sensing models 2016 ,		6	
70	Containment Problem for Multiagent Systems With Nonconvex Velocity Constraints. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 4716-4721	10.2	5	
69	Distributed Average Tracking in Multi-agent Systems 2020 ,		5	
68	Synchronization of Coupled Nonlinear Dynamical Systems: Interplay Between Times of Connectivity and Integral of Lipschitz Gain. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2016 , 63, 391-3	935 ⁵	5	
67	Distributed containment control of linear multi-agent systems with multiple leaders and reduced-order controllers 2011 ,		5	
66	Distributed shortest distance consensus problem in multi-agent systems 2012 ,		5	
65	Constrained nonlinear tracking control for small fixed-wing unmanned air vehicles 2004,		5	
64	Dynamic Modularity Approach to Adaptive Control of Robotic Systems With Closed Architecture. <i>IEEE Transactions on Automatic Control</i> , 2020 , 65, 2760-2767	5.9	5	
63	Distributed minimum weighted norm solution to linear equations associated with weighted inner product 2016 ,		5	
62	Fully distributed state estimation with multiple model approach 2016,		5	
61	Observer-Based Distributed Mean-Square Consensus Design for Leader-Following Multiagent Markov Jump Systems. <i>IEEE Transactions on Cybernetics</i> , 2021 , 51, 3054-3061	10.2	5	
60	Cooperative Adaptive Containment Control With Parameter Convergence via Cooperative Finite-Time Excitation. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	5	

59	Distributed solution to linear equations from arbitrary initializations 2017,		4
58	Distributed coordination of fractional-order systems with extensions to directed dynamic networks and absolute/relative damping 2009 ,		4
57	Consensus of information in distributed control of a diffusion process using centroidal Voronoi tessellations 2007 ,		4
56	Rendezvous Problem in Multi-vehicle Systems: Information Relay and Local Information Based Strategies 2006 ,		4
55	Cooperative Control Design Strategies with Local Interactions		4
54	2019,		4
53	Sampled-data containment control for double-integrator agents with dynamic leaders with nonzero inputs. <i>Systems and Control Letters</i> , 2020 , 139, 104673	2.4	4
52	Fully Distributed Joint Localization and Target Tracking With Mobile Robot Networks. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 29, 1519-1532	4.8	4
51	A Unified Framework for Adaptive Leaderless Consensus of Uncertain Multi-agent Systems under Directed Graphs. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	4
50	Distributed Average Tracking in Weight-Unbalanced Directed Networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 66, 4436-4443	5.9	4
49	Fully distributed consensus control for a class of disturbed second-order multi-agent systems with directed networks. <i>Automatica</i> , 2021 , 132, 109816	5.7	4
48	Cooperative Startup Control for Heterogeneous Vehicle Platoons: A Finite-time Output Tracking-based Approach. <i>IEEE Transactions on Control of Network Systems</i> , 2021 , 1-1	4	4
47	Consensus of linear differential inclusions via composite Laplacian quadratics 2015,		3
46	Decentralized cooperative attitude tracking using Modified Rodriguez Parameters 2009,		3
45	Satisficing control for multi-agent formation maneuvers		3
44	Distributed Continuous-Time Optimization with Time-Varying Objective Functions and Inequality Constraints 2020 ,		3
43	Generalized Nash Equilibrium Seeking via Continuous-Time Coordination Dynamics Over Digraphs. <i>IEEE Transactions on Control of Network Systems</i> , 2021 , 8, 1023-1033	4	3
42	Dynamic modularity approach to adaptive inner/outer loop control of robotic systems 2016 ,		3

41	Distributed Average Tracking over Weight-Unbalanced Directed Graphs 2019,		3
40	Cooperative optimal coordination for distributed energy resources 2017,		2
39	Distributed parameter estimation under unreliable directed networks 2015,		2
38	Distributed finite-time containment control for multiple Lagrangian systems 2010,		2
37	Multi-agent coordination with cohesion, dispersion, and containment control 2010,		2
36	2011,		2
35	Spectrum Opportunity Detection: How Good Is Listen-before-Talk?. <i>Conference Record of the Asilomar Conference on Signals, Systems and Computers</i> , 2007 ,	0.3	2
34	Distributed Continuous-Time Algorithms for Optimal Resource Allocation With Time-Varying Quadratic Cost Functions. <i>IEEE Transactions on Control of Network Systems</i> , 2020 , 7, 1974-1984	4	2
33	Controllability and observability of an n-link planar robot with active joints 2016,		2
32	Distributed Nash Equilibrium Seeking Algorithms for Two-Layer Constrained Non-Cooperative Games 2019 ,		2
31	Adaptive Image-Space Regulation for Robotic Systems. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 29, 850-857	4.8	2
30	Distributed Nonlinear Placement for Multicluster Systems: A Time-Varying Nash Equilibrium-Seeking Approach. <i>IEEE Transactions on Cybernetics</i> , 2021 , PP,	10.2	2
29	Communication-efficient Distributed Solutions to a System of Linear Equations with Laplacian Sparse Structure 2018 ,		2
28	Fully distributed nonlinear state estimation using sensor networks 2017,		1
27	Cooperative control of nonlinear multi-agent systems with only relative position measurements 2012 ,		1
26	Tracking the average of time-varying nonsmooth signals for double-integrator agents with a fixed topology 2013 ,		1
25	Containment control for networked unknown Lagrangian systems with multiple dynamic leaders under a directed graph 2013 ,		1
24	Distributed coordinated tracking via a variable structure approach - part II: Swarm tracking 2010 ,		1

23	Distributed coordinated tracking via a variable structure approach - part I: Consensus tracking 2010 ,		1
22	Distributed multi-agent coordination: A comparison lemma based approach 2011,		1
21	Distributed Discrete-time Consensus with a Time-varying Reference State 2008,		1
20	Experimental implementation and validation of consensus algorithms on a mobile actuator and sensor network platform 2007 ,		1
19	Decentralization of Coordination Variables in Multi-vehicle Systems		1
18	Multi-Agent Control: A Graph-Theoretic Perspective. <i>Journal of Systems Science and Complexity</i> , 2021 , 34, 1973-2002	1	1
17	Robust Event-triggered Distributed Average Tracking for Double-integrator Agents Without Velocity Measurements 2020 ,		1
16	Robust Distributed Average Tracking for Double-Integrator Agents Without Velocity Measurements Under Event-Triggered Communication. <i>IEEE Transactions on Control of Network</i> Systems, 2021 , 8, 828-837	4	1
15	Convex Optimization via Finite-Time Projected Gradient Flows 2018,		1
14	Distributed Time-Varying Quadratic Optimal Resource Allocation Subject to Nonidentical Time-Varying Hessians With Application to Multiquadrotor Hose Transportation. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2022, 1-11	7.3	O
13	Angle-Based Analysis Approach for Distributed Constrained Optimization. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	О
12	Distributed Time-Varying Optimization With State-Dependent Gains: Algorithms and Experiments. <i>IEEE Transactions on Control Systems Technology</i> , 2021 , 1-10	4.8	O
11	Distributed containment control for first-order and second-order multiagent systems with arbitrarily bounded delays. <i>International Journal of Robust and Nonlinear Control</i> , 2019 , 29, 6657-6657	3.6	
10	Distributed Average Tracking for Double-Integrator Dynamics 2020 , 79-124		
9	Distributed Average Tracking with Input Saturation 2020 , 157-175		
8	A scaling-function approach for distributed constrained optimization in unbalanced multi-agent networks. <i>IEEE Transactions on Automatic Control</i> , 2021 , 1-1	5.9	
7	Distributed and communication-efficient solutions to linear equations with special sparse structure. <i>Systems and Control Letters</i> , 2022 , 160, 105065	2.4	
6	Distributed Average Tracking for General Linear Dynamics 2020 , 125-134		

LIST OF PUBLICATIONS

- 5 Distributed Average Tracking for Networked Euler[lagrange Systems **2020**, 135-156
- Distributed Average Tracking in Distributed Convex Optimization **2020**, 193-231
- 3 Distributed Average Tracking via an Extended PI Scheme 2020, 61-75
- 2 Distributed Average Tracking in Formation Control **2020**, 179-191
- Distributed Average Tracking via Nonsmooth Feedback **2020**, 39-60