
Stephen P J Fancy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3745184/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nature Neuroscience, 2021, 24, 234-244.	7.1	120
2	Oligodendroglial ring finger protein Rnf43 is an essential injury-specific regulator of oligodendrocyte maturation. Neuron, 2021, 109, 3104-3118.e6.	3.8	21
3	Mechanisms of oligodendrocyte progenitor developmental migration. Developmental Neurobiology, 2021, 81, 985-996.	1.5	10
4	Aberrant oligodendroglial–vascular interactions disrupt the blood–brain barrier, triggering CNS inflammation. Nature Neuroscience, 2019, 22, 709-718.	7.1	131
5	Transforming growth factorâ€beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia, 2019, 67, 1374-1384.	2.5	32
6	Clemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury. Brain, 2018, 141, 85-98.	3.7	83
7	Enhancing Oligodendrocyte Myelination Rescues Synaptic Loss and Improves Functional Recovery after Chronic Hypoxia. Neuron, 2018, 99, 689-701.e5.	3.8	108
8	Lgl1 controls NG2 endocytic pathway to regulate oligodendrocyte differentiation and asymmetric cell division and gliomagenesis. Nature Communications, 2018, 9, 2862.	5.8	19
9	Fibrinogen Activates BMP Signaling in Oligodendrocyte Progenitor Cells and Inhibits Remyelination after Vascular Damage. Neuron, 2017, 96, 1003-1012.e7.	3.8	131
10	Moderate-Grade Germinal Matrix Haemorrhage Activates Cell Division in the Neonatal Mouse Subventricular Zone. Developmental Neuroscience, 2016, 38, 430-444.	1.0	12
11	Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science, 2016, 351, 379-384.	6.0	319
12	Apcdd1 stimulates oligodendrocyte differentiation after white matter injury. Clia, 2015, 63, 1840-1849.	2.5	29
13	Daam2-PIP5K Is a Regulatory Pathway for Wnt Signaling and Therapeutic Target for Remyelination in the CNS. Neuron, 2015, 85, 1227-1243.	3.8	69
14	Sox2 Sustains Recruitment of Oligodendrocyte Progenitor Cells following CNS Demyelination and Primes Them for Differentiation during Remyelination. Journal of Neuroscience, 2015, 35, 11482-11499.	1.7	67
15	Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nature Neuroscience, 2014, 17, 506-512.	7.1	98
16	Oligodendrocyte-Encoded HIF Function Couples Postnatal Myelination and White Matter Angiogenesis. Cell, 2014, 158, 383-396.	13.5	314
17	Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 2014, 20, 954-960.	15.2	451
18	Expression profiling of Aldh1l1â€precursors in the developing spinal cord reveals glial lineageâ€specific genes and direct Sox9â€Nfe2l1 interactions. Glia, 2013, 61, 1518-1532.	2.5	61

STEPHEN P J FANCY

#	Article	IF	CITATIONS
19	Neurite outgrowth inhibitor Nogo-A establishes spatial segregation and extent of oligodendrocyte myelination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1299-1304.	3.3	196
20	Regional Astrocyte Allocation Regulates CNS Synaptogenesis and Repair. Science, 2012, 337, 358-362.	6.0	448
21	Evidence that nuclear factor IA inhibits repair after white matter injury. Annals of Neurology, 2012, 72, 224-233.	2.8	31
22	Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neuroscience, 2011, 14, 1009-1016.	7.1	307
23	Myelin Regeneration: A Recapitulation of Development?. Annual Review of Neuroscience, 2011, 34, 21-43.	5.0	282
24	Myelin Regeneration in Multiple Sclerosis: Targeting Endogenous Stem Cells. Neurotherapeutics, 2011, 8, 650-658.	2.1	47
25	Oligodendrocyte <i>PTEN</i> is required for myelin and axonal integrity, not remyelination. Annals of Neurology, 2010, 68, 703-716.	2.8	148
26	CNS-Resident Glial Progenitor/Stem Cells Produce Schwann Cells as well as Oligodendrocytes during Repair of CNS Demyelination. Cell Stem Cell, 2010, 6, 578-590.	5.2	549
27	Overcoming remyelination failure in multiple sclerosis and other myelin disorders. Experimental Neurology, 2010, 225, 18-23.	2.0	161
28	Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes and Development, 2009, 23, 1571-1585.	2.7	537
29	Upâ€regulation of oligodendrocyte precursor cell αV integrin and its extracellular ligands during central nervous system remyelination. Journal of Neuroscience Research, 2009, 87, 3447-3455.	1.3	58
30	Osteopontin is extensively expressed by macrophages following CNS demyelination but has a redundant role in remyelination. Neurobiology of Disease, 2008, 31, 209-217.	2.1	40
31	Olig gene function in CNS development and disease. Glia, 2006, 54, 1-10.	2.5	197
32	Stem cells, progenitors and myelin repair. Journal of Anatomy, 2005, 207, 251-258.	0.9	58
33	Mechanisms of CNS remyelination—the key to therapeutic advances. Journal of the Neurological Sciences, 2005, 233, 87-91.	0.3	63
34	bHLH Transcription Factor Olig1 Is Required to Repair Demyelinated Lesions in the CNS. Science, 2004, 306, 2111-2115.	6.0	379
35	Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Molecular and Cellular Neurosciences, 2004, 27, 247-254.	1.0	256