

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/374516/publications.pdf Version: 2024-02-01

KALLI

#	Article	IF	CITATIONS
1	Regulation of mixed Ag valence state by non-thermal plasma for complete oxidation of formaldehyde. Chinese Chemical Letters, 2022, 33, 434-437.	9.0	8
2	Synergistic Effects of a Combination of Vacuum Ultraviolet–Induced Oxidation and Wet Absorption Process on Removal of Nitric Oxide at Room Temperature. Journal of Environmental Engineering, ASCE, 2021, 147, .	1.4	2
3	Efficient photocatalytic oxidation of gaseous toluene over F-doped TiO2 in a wet scrubbing process. Chemical Engineering Journal, 2020, 386, 121025.	12.7	51
4	Efficient activation of Pd/CeO2 catalyst by non-thermal plasma for complete oxidation of indoor formaldehyde at room temperature. Chemosphere, 2020, 246, 125762.	8.2	30
5	Complete oxidation of formaldehyde over a Pd/CeO ₂ catalyst at room temperature: tunable active oxygen species content by non-thermal plasma activation. Catalysis Science and Technology, 2020, 10, 6257-6265.	4.1	21
6	Mechanistic insights into toluene degradation under VUV irradiation coupled with photocatalytic oxidation. Journal of Hazardous Materials, 2020, 399, 122967.	12.4	48
7	Selective hydrogenation of acetylene over Pd/CeO2. Frontiers of Chemical Science and Engineering, 2020, 14, 929-936.	4.4	15
8	Theoretical study on the effect of Mn promoter for CO2 reforming of CH4 on the Ni(1Â1Â1) surface. Fuel, 2020, 274, 117849.	6.4	8
9	Warm-plasma catalytic reduction of CO2 with CH4. Catalysis Today, 2019, 330, 54-60.	4.4	19
10	Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water. Chemosphere, 2019, 233, 754-761.	8.2	36
11	Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International, 2019, 125, 200-228.	10.0	208
12	Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chemical Engineering Journal, 2018, 353, 297-304.	12.7	34
13	Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288, 671-679.	12.7	57
14	Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts. Catalysis Today, 2015, 256, 96-101.	4.4	19
15	Effect of CO2/CH4 ratio on biogas reforming with added O2 through an unique spark-shade plasma. International Journal of Hydrogen Energy, 2014, 39, 13902-13908.	7.1	20
16	Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade. Chemical Engineering Journal, 2013, 234, 240-246.	12.7	29
17	Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor. Journal of Energy Chemistry, 2013, 22, 681-684.	12.9	15