Gui-Juan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744895/publications.pdf

Version: 2024-02-01

38 papers 2,070 citations

331642 21 h-index 345203 36 g-index

42 all docs 42 docs citations

42 times ranked 2003 citing authors

#	Article	IF	CITATIONS
1	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	13.7	317
2	miRTarBase update 2022: an informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Research, 2022, 50, D222-D230.	14.5	294
3	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	13.7	271
4	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	13.7	263
5	A Combined IMâ€MS/DFT Study on [Pd(MPAA)]â€Catalyzed Enantioselective CH Activation: Relay of Chirality through a Rigid Framework. Chemistry - A European Journal, 2015, 21, 11180-11188.	3.3	94
6	Catalytic Asymmetric Vinylogous Prins Cyclization: A Highly Diastereo- and Enantioselective Entry to Tetrahydrofurans. Journal of the American Chemical Society, 2016, 138, 14538-14541.	13.7	67
7	Dual role of ethyl bromodifluoroacetate in the formation of fluorine-containing heteroaromatic compounds. Chemical Communications, 2018, 54, 8960-8963.	4.1	60
8	Diastereo- and Enantioselective Catalytic Radical Oxysulfonylation of Alkenes in \hat{l}^2 , \hat{l}^3 -Unsaturated Ketoximes. CheM, 2020, 6, 1692-1706.	11.7	55
9	Siliconâ€Containing Formal 4Ï€â€Electron Fourâ€Membered Ring Systems: Antiaromatic, Aromatic, or Nonaromatic?. Chemistry - A European Journal, 2012, 18, 7516-7524.	3.3	51
10	Total Synthesis of Incarvilleatone and Incarviditone: Insight into Their Biosynthetic Pathways and Structure Determination. Organic Letters, 2012, 14, 4878-4881.	4.6	46
11	Nickel-Catalyzed Cross-Electrophile Coupling Reactions for the Synthesis of <i>gem</i> -Difluorovinyl Arenes. ACS Catalysis, 2020, 10, 13616-13623.	11.2	44
12	Nickelâ€Catalyzed Migratory Hydrocyanation of Internal Alkenes: Unexpected Diastereomericâ€Ligandâ€Controlled Regiodivergence. Angewandte Chemie - International Edition, 2021, 60, 1883-1890.	13.8	43
13	Computational Studies on the Mechanism of the Copperâ€Catalyzed sp ³ â€CH Crossâ€Dehydrogenative Coupling Reaction. ChemPlusChem, 2013, 78, 943-951.	2.8	42
14	Enantioselective Formation of Cyanoâ€Bearing Allâ€Carbon Quaternary Stereocenters: Desymmetrization by Copperâ€Catalyzed Nâ€Arylation. Angewandte Chemie - International Edition, 2014, 53, 9555-9559.	13.8	42
15	Organocatalytic stereoselective cyanosilylation of small ketones. Nature, 2022, 605, 84-89.	27.8	37
16	Formal Syntheses of (\hat{A}_{\pm}) -Platensimycin and (\hat{A}_{\pm}) -Platencin via a Dual-Mode Lewis Acid Induced Cascade Cyclization Approach. Journal of Organic Chemistry, 2013, 78, 7912-7929.	3.2	33
17	Temperature- and Mechanical-Force-Responsive Self-Assembled Rhomboidal Metallacycle. Organometallics, 2019, 38, 4244-4249.	2.3	33
18	Directing-Group-Based Strategy Enabling Intermolecular Heck-Type Reaction of Cycloketone Oxime Esters and Unactivated Alkenes. Organic Letters, 2020, 22, 3524-3530.	4.6	29

#	Article	lF	Citations
19	Mechanistic understanding of catalysis by combining mass spectrometry and computation. Chemical Communications, 2019, 55, 12749-12764.	4.1	25
20	Mechanistic Study on Pd/Mono-N-protected Amino Acid Catalyzed Vinyl–Vinyl Coupling Reactions: Reactivity and ⟨i⟩E⟨ i⟩ ⟨i⟩Z⟨ i⟩ Selectivity. Organic Letters, 2016, 18, 5240-5243.	4.6	22
21	Catalytic Reductive Pinacolâ€Type Rearrangement of Unactivated 1,2â€Diols through a Concerted, Stereoinvertive Mechanism. Angewandte Chemie - International Edition, 2017, 56, 13377-13381.	13.8	22
22	Computational Study of B(C ₆ F ₅) ₃ -Catalyzed Selective Deoxygenation of 1,2-Diols: Cyclic and Noncyclic Pathways. ACS Catalysis, 2018, 8, 1697-1702.	11.2	22
23	Enantioselective Nickel-Catalyzed Hydrocyanative Desymmetrization of Norbornene Derivatives. ACS Catalysis, 2021, 11, 7578-7583.	11.2	20
24	Molecular dynamics study of taxadiene synthase catalysis. Journal of Computational Chemistry, 2018, 39, 1215-1225.	3.3	18
25	Hydroxyâ€Directed Rutheniumâ€Catalyzed Alkene/Alkyne Coupling: Increased Scope, Stereochemical Implications, and Mechanistic Rationale. Angewandte Chemie, 2017, 129, 3653-3658.	2.0	16
26	Ligand-Controlled Regiodivergent Nickel-Catalyzed Hydrocyanation of Silyl-Substituted 1,3-Diynes. Organic Letters, 2021, 23, 4045-4050.	4.6	14
27	Nickel-Catalyzed Regiodivergent Cyanation of Allylic Alcohols: Scope, Mechanism, and Application to the Synthesis of $1,\langle i\rangle n\langle i\rangle$ -Dinitriles. ACS Catalysis, 2021, 11, 13880-13890.	11.2	14
28	Highly Regio―and Stereoselective Niâ€Catalyzed Hydrocyanation of 1,3â€Enynes. Chemistry - A European Journal, 2020, 26, 5956-5960.	3.3	12
29	Salen-based bifunctional chemosensor for copper (II) ions: Inhibition of copper-induced amyloid- \hat{l}^2 aggregation. Analytica Chimica Acta, 2020, 1097, 144-152.	5.4	11
30	Novel imprinted polyethyleneimine nano-fluorescent probes with controllable selectivity for recognizing and adsorbing metal ions. RSC Advances, 2017, 7, 36048-36055.	3.6	9
31	Catalytic Reductive Pinacolâ€Type Rearrangement of Unactivated 1,2â€Diols through a Concerted, Stereoinvertive Mechanism. Angewandte Chemie, 2017, 129, 13562-13566.	2.0	6
32	Ni-Catalyzed Isomerization–Hydrocyanation Tandem Reactions: Access to Linear Nitriles from Aliphatic Internal Olefins. Organic Letters, 2021, 23, 486-490.	4.6	6
33	DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal–Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. Jacs Au, 2022, 2, 745-761.	7.9	6
34	Computational exploration of copper catalyzed vinylogous aerobic oxidation of unsaturated compounds. Scientific Reports, 2021, 11, 1304.	3.3	2
35	Mechanistic Studies on Copper-Catalyzed sp3-C–H Cross-Dehydrogenative Coupling Reaction. Springer Theses, 2017, , 111-126.	0.1	0
36	Mechanistic Studies on Pd(MPAA)-Catalyzed Enantioselective C–H Activation Reactions. Springer Theses, 2017, , 83-110.	0.1	0

#	Article	lF	CITATIONS
37	Mechanistic Studies on Pd(OAc)2-Catalyzed Meta-C–H Activation Reaction. Springer Theses, 2017, , 43-62.	0.1	O
38	Mechanistic Studies on Pd(MPAA)-Catalyzed Meta- and Ortho-C–H Activation Reactions. Springer Theses, 2017, , 63-81.	0.1	0