
## Hongxuan Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744807/publications.pdf Version: 2024-02-01



HONCYLIAN LIN

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Decreasing nitrogen assimilation under drought stress by suppressing DST-mediated activation of Nitrate Reductase 1.2 in rice. Molecular Plant, 2022, 15, 167-178.                                              | 8.3  | 40        |
| 2  | TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nature Plants, 2022, 8, 53-67.                                                                                         | 9.3  | 77        |
| 3  | A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science, 2022, 376, 1293-1300.                                                                                          | 12.6 | 80        |
| 4  | Contribution of phenylpropanoid metabolism to plant development and plant–environment<br>interactions. Journal of Integrative Plant Biology, 2021, 63, 180-209.                                                 | 8.5  | 509       |
| 5  | Creating future crops: a revolution for sustainable agriculture. Journal of Genetics and Genomics, 2021, 48, 97-101.                                                                                            | 3.9  | 5         |
| 6  | Molecular regulation and genetic control of rice thermal response. Crop Journal, 2021, 9, 497-505.                                                                                                              | 5.2  | 18        |
| 7  | A rice QTL GS3.1 regulates grain size through metabolic-flux distribution between flavonoid and lignin metabolons without affecting stress tolerance. Communications Biology, 2021, 4, 1171.                    | 4.4  | 12        |
| 8  | <i>Tillering and small grain 1</i> dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 2020, 62, 581-600.                     | 8.5  | 37        |
| 9  | A SAC Phosphoinositide Phosphatase Controls Rice Development via Hydrolyzing PI4P and PI(4,5)P <sub>2</sub> . Plant Physiology, 2020, 182, 1346-1358.                                                           | 4.8  | 15        |
| 10 | Higher yield with less nitrogen fertilizer. Nature Plants, 2020, 6, 1078-1079.                                                                                                                                  | 9.3  | 26        |
| 11 | A quantitative trait locus <i>GW6</i> controls rice grain size and yield through the gibberellin pathway. Plant Journal, 2020, 103, 1174-1188.                                                                  | 5.7  | 85        |
| 12 | <i>ERECTA1</i> Acts Upstream of the OsMKKK10-OsMKK4-OsMPK6 Cascade to Control Spikelet Number by Regulating Cytokinin Metabolism in Rice. Plant Cell, 2020, 32, 2763-2779.                                      | 6.6  | 92        |
| 13 | UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nature Communications, 2020, 11, 2629.                                            | 12.8 | 158       |
| 14 | Translational Regulation of Plant Response to High Temperature by a Dual-Function tRNAHis<br>Guanylyltransferase in Rice. Molecular Plant, 2019, 12, 1123-1142.                                                 | 8.3  | 44        |
| 15 | NAL8 encodes a prohibitin that contributes to leaf and spikelet development by regulating mitochondria and chloroplasts stability in rice. BMC Plant Biology, 2019, 19, 395.                                    | 3.6  | 10        |
| 16 | Crop Improvement Through Temperature Resilience. Annual Review of Plant Biology, 2019, 70, 753-780.                                                                                                             | 18.7 | 138       |
| 17 | A defensin-like protein drives cadmium efflux and allocation in rice. Nature Communications, 2018, 9,<br>645.                                                                                                   | 12.8 | 263       |
| 18 | <i>GRAIN SIZE AND NUMBER1</i> Negatively Regulates the OsMKKK10-OsMKK4-OsMPK6 Cascade to<br>Coordinate the Trade-off between Grain Number per Panicle and Grain Size in Rice. Plant Cell, 2018, 30,<br>871-888. | 6.6  | 196       |

Hongxuan Lin

| #  | Article                                                                                                                                                                                    | IF                             | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------|
| 19 | The Rice High-Affinity K+ Transporter OsHKT2;4 Mediates Mg2+ Homeostasis under High-Mg2+<br>Conditions in Transgenic Arabidopsis. Frontiers in Plant Science, 2017, 8, 1823.               | 3.6                            | 13             |
| 20 | Evolution and Molecular Control of Hybrid Incompatibility in Plants. Frontiers in Plant Science, 2016, 7, 1208.                                                                            | 3.6                            | 42             |
| 21 | Molecular signature of chilling adaptation in rice. National Science Review, 2016, 3, 276-277.                                                                                             | 9.5                            | 1              |
| 22 | OsHAL3, a Blue Light-Responsive Protein, Interacts with the Floral Regulator Hd1 to Activate Flowering in Rice. Molecular Plant, 2016, 9, 233-244.                                         | 8.3                            | 35             |
| 23 | The QTL GNP1 Encodes GA20ox1, Which Increases Grain Number and Yield by Increasing Cytokinin Activity in Rice Panicle Meristems. PLoS Genetics, 2016, 12, e1006386.                        | 3.5                            | 161            |
| 24 | Nitrogen-use efficiency: Transport solution in rice variations. Nature Plants, 2015, 1, 15096.                                                                                             | 9.3                            | 7              |
| 25 | DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice. PLoS Genetics, 2015, 11, e1005617.                                               | 3.5                            | 92             |
| 26 | EXPO and Autophagosomes are Distinct Organelles in Plants. Plant Physiology, 2015, 169, pp.00953.2015.                                                                                     | 4.8                            | 43             |
| 27 | Natural alleles of a proteasome $\hat{l}\pm 2$ subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47, 827-833.                              | 21.4                           | 265            |
| 28 | SS1 (NAL1)- and SS2-Mediated Genetic Networks Underlying Source-Sink and Yield Traits in Rice (Oryza) Tj ETQo                                                                              | 10 0 0 rgB <sup>-</sup><br>2.5 | F /Qyerlock 10 |
| 29 | The <i>miR156â€<scp>SPL</scp>9â€<scp>DFR</scp></i> pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant Journal, 2014, 80, 1108-1117.    | 5.7                            | 385            |
| 30 | Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46, 652-656.                                                                                    | 21.4                           | 338            |
| 31 | A two-locus interaction causes interspecific hybrid weakness in rice. Nature Communications, 2014, 5, 3357.                                                                                | 12.8                           | 88             |
| 32 | Rice Carotenoid β-Ring Hydroxylase CYP97A4 is Involved in Lutein Biosynthesis. Plant and Cell<br>Physiology, 2012, 53, 987-1002.                                                           | 3.1                            | 58             |
| 33 | The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.<br>Cell Research, 2012, 22, 1666-1680.                                              | 12.0                           | 334            |
| 34 | The tricks plants use to reach appropriate light. Science China Life Sciences, 2010, 53, 916-926.                                                                                          | 4.9                            | 6              |
| 35 | A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes and Development, 2009, 23, 1805-1817.                     | 5.9                            | 504            |
| 36 | Fine mapping and candidate gene analysis of spd6, responsible for small panicle and dwarfness in wild rice (Oryza rufipogon Griff.). Theoretical and Applied Genetics, 2009, 119, 827-836. | 3.6                            | 40             |

Hongxuan Lin

| #  | Article                                                                                                                                                                                                               | IF                | CITATIONS            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| 37 | Identification of Quantitative Trait Loci for Rice Quality in a Population of Chromosome Segment<br>Substitution Lines. Journal of Integrative Plant Biology, 2009, 51, 500-512.                                      | 8.5               | 51                   |
| 38 | Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta, 2008, 228, 191-201.                            | 3.2               | 239                  |
| 39 | Expression and characterization of rice putative <i>PAUSED</i> gene. Acta Biochimica Et Biophysica<br>Sinica, 2008, 40, 893-900.                                                                                      | 2.0               | 1                    |
| 40 | Fine Mapping of Spr3, a Locus for Spreading Panicle from African Cultivated Rice (Oryza glaberrima) Tj ETQq0 0 (                                                                                                      | ) rgBT /Ov<br>8.3 | erlock 10 Tf 5<br>25 |
| 41 | Development of Chromosome Segment Substitution Lines Derived from Backcross between indica<br>Donor Rice Cultivar 'Nona Bokra' and japonica Recipient Cultivar 'Koshihikari'. Breeding Science, 2007,<br>57, 257-261. | 1.9               | 78                   |
| 42 | A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.<br>Nature Genetics, 2007, 39, 623-630.                                                                              | 21.4              | 1,403                |

| 43 | Understanding Abiotic Stress Tolerance Mechanisms: Recent Studies on Stress Response in Rice.<br>Journal of Integrative Plant Biology, 2007, 49, 742-750. | 8.5  | 172   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
| 44 | A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37, 1141-1146.                                    | 21.4 | 1,229 |
| 45 | Fine Mapping and Characterization of Quantitative Trait Loci Hd4 and Hd5 Controlling Heading Date in Rice Breeding Science, 2003, 53, 51-59.              | 1.9  | 143   |