
## Yue-Min Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744785/publications.pdf Version: 2024-02-01



VIIE-MIN XIE

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | D-A-ï€-A-D-type Dopant-free Hole Transport Material for Low-Cost, Efficient, and Stable Perovskite<br>Solar Cells. Joule, 2021, 5, 249-269.                                                                                                | 11.7 | 203       |
| 2  | Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360, 157-165.                                  | 4.0  | 106       |
| 3  | 18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar<br>Rrl, 2017, 1, 1700097.                                                                                                             | 3.1  | 97        |
| 4  | Impact of surface dipole in NiOx on the crystallization and photovoltaic performance of organometal halide perovskite solar cells. Nano Energy, 2019, 61, 496-504.                                                                         | 8.2  | 92        |
| 5  | Air-processed mixed-cation Cs <sub>0.15</sub> FA <sub>0.85</sub> PbI <sub>3</sub> planar perovskite<br>solar cells derived from a PbI <sub>2</sub> –CsI–FAI intermediate complex. Journal of Materials<br>Chemistry A, 2018, 6, 7731-7740. | 5.2  | 75        |
| 6  | Porphyrin-based thick-film bulk-heterojunction solar cells for indoor light harvesting. Journal of<br>Materials Chemistry C, 2018, 6, 9111-9118.                                                                                           | 2.7  | 67        |
| 7  | Suppressing Ion Migration across Perovskite Grain Boundaries by Polymer Additives. Advanced Functional Materials, 2021, 31, 2006802.                                                                                                       | 7.8  | 66        |
| 8  | Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D<br>Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.                                                          | 10.2 | 63        |
| 9  | Charge transfer-induced photoluminescence in ZnO nanoparticles. Nanoscale, 2019, 11, 8736-8743.                                                                                                                                            | 2.8  | 48        |
| 10 | Improving the conductivity of sol–gel derived NiO <sub>x</sub> with a mixed oxide composite to<br>realize over 80% fill factor in inverted planar perovskite solar cells. Journal of Materials Chemistry<br>A, 2019, 7, 9578-9586.         | 5.2  | 47        |
| 11 | Homogeneous Grain Boundary Passivation in Wideâ€Bandgap Perovskite Films Enables Fabrication of<br>Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency. Advanced Functional<br>Materials, 2022, 32, .                | 7.8  | 42        |
| 12 | FAâ€Assistant lodide Coordination in Organic–Inorganic Wideâ€Bandgap Perovskite with Mixed Halides.<br>Small, 2020, 16, e1907226.                                                                                                          | 5.2  | 38        |
| 13 | Revealing the crystallization process and realizing uniform 1.8 eV MA-based wide-bandgap mixed-halide perovskites via solution engineering. Nano Research, 2019, 12, 1033-1039.                                                            | 5.8  | 37        |
| 14 | Direct observation of cation-exchange in liquid-to-solid phase transformation in<br>FA <sub>1â^'x</sub> MA <sub>x</sub> PbI <sub>3</sub> based perovskite solar cells. Journal of Materials<br>Chemistry A, 2018, 6, 9081-9088.            | 5.2  | 35        |
| 15 | Metalâ€Halide Perovskite Crystallization Kinetics: A Review of Experimental and Theoretical Studies.<br>Advanced Energy Materials, 2021, 11, 2100784.                                                                                      | 10.2 | 35        |
| 16 | Subtle side chain modification of triphenylamineâ€based polymer holeâ€transport layer materials<br>produces efficient and stable inverted perovskite solar cells. , 2022, 1, 281-293.                                                      |      | 34        |
| 17 | Porous and Intercrossed PbI <sub>2</sub> –CsI Nanorod Scaffold for Inverted Planar FA–Cs<br>Mixed-Cation Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 6126-6135.                                                  | 4.0  | 32        |
| 18 | Synergistic Effect of Pseudo-Halide Thiocyanate Anion and Cesium Cation on Realizing<br>High-Performance Pinhole-Free MA-Based Wide-Band Gap Perovskites. ACS Applied Materials &<br>Interfaces, 2019, 11, 25909-25916.                    | 4.0  | 23        |

Yue-Min Xie

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. Nano<br>Select, 2021, 2, 1266-1276.                                                                                         | 1.9  | 18        |
| 20 | The Role of Diammonium Cation on the Structural and Optoelectronic Properties in 3D<br>Cesium–Formamidinium Mixed ation Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900140.                                           | 3.1  | 16        |
| 21 | Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host<br>material via a direct carbon–nitrogen bond. Journal of Materials Chemistry C, 2015, 3, 5347-5353.                   | 2.7  | 15        |
| 22 | Solution processable small molecule based organic light-emitting devices prepared by dip-coating method. Organic Electronics, 2018, 55, 1-5.                                                                           | 1.4  | 12        |
| 23 | Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties. Journal of Energy Chemistry, 2022, 71, 12-19.                             | 7.1  | 12        |
| 24 | High efficiency and low driving voltage blue/white electrophosphorescence enabled by the<br>synergistic combination of singlet and triplet energy of bicarbazole derivatives. Organic Electronics,<br>2015, 26, 25-29. | 1.4  | 9         |
| 25 | Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D<br>Heterostructure Perovskite Solar Cells (Adv. Energy Mater. 2/2022). Advanced Energy Materials, 2022,<br>12. 2270004.       | 10.2 | 1         |