
Dimitrios Mougiakakos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The CAR-HEMATOTOX risk-stratifies patients for severe infections and disease progression after CD19 CAR-T in R/R LBCL. , 2022, 10, e004475.		50
2	Mitochondrial respiration in B lymphocytes is essential for humoral immunity by controlling the flux of the TCA cycle. Cell Reports, 2022, 39, 110912.	2.9	20
3	The metabolic profile of reconstituting T-cells, NK-cells, and monocytes following autologous stem cell transplantation and its impact on outcome. Scientific Reports, 2022, 12, .	1.6	2
4	Impact of Nrf2 expression in reconstituting T-cells of allogeneic hematopoietic stem cell transplanted patients. Leukemia, 2021, 35, 910-915.	3.3	6
5	The IKZF1–IRF4/IRF5 Axis Controls Polarization of Myeloma-Associated Macrophages. Cancer Immunology Research, 2021, 9, 265-278.	1.6	26
6	Control of PD-L1 expression in CLL-cells by stromal triggering of the Notch-c-Myc-EZH2 oncogenic signaling axis. , 2021, 9, e001889.		15
7	CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Leukemia, 2021, 35, 3482-3496.	3.3	22
8	The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity, 2021, 54, 1002-1021.e10.	6.6	106
9	Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: a case report. , 2021, 9, e002721.		24
10	Multi-omics reveals clinically relevant proliferative drive associated with mTOR-MYC-OXPHOS activity in chronic lymphocytic leukemia. Nature Cancer, 2021, 2, 853-864.	5.7	32
11	IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity, 2021, 54, 2531-2546.e5.	6.6	67
12	The CAR-Hematotox Identifies Patients at High Risk for Prolonged Neutropenia, Infectious Complications and Prolonged Hospitalization Following CD19-CART in R/R LBCL. Blood, 2021, 138, 3852-3852.	0.6	1
13	Linking Immunoevasion and Metabolic Reprogramming in B-Cell–Derived Lymphomas. Frontiers in Oncology, 2020, 10, 594782.	1.3	13
14	Palmitoylated Proteins on AML-Derived Extracellular Vesicles Promote Myeloid-Derived Suppressor Cell Differentiation via TLR2/Akt/mTOR Signaling. Cancer Research, 2020, 80, 3663-3676.	0.4	30
15	N-glycosylation controls inflammatory licensing-triggered PD-L1 upregulation in human mesenchymal stromal cells. Stem Cells, 2020, 38, 986-993.	1.4	10
16	Selective PRMT5 Inhibitors Suppress Human CD8+ T Cells by Upregulation of p53 and Impairment of the AKT Pathway Similar to the Tumor Metabolite MTA. Molecular Cancer Therapeutics, 2020, 19, 409-419.	1.9	29
17	The Induction of a Permissive Environment to Promote T Cell Immune Evasion in Acute Myeloid Leukemia: The Metabolic Perspective. Frontiers in Oncology, 2019, 9, 1166.	1.3	14
18	Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation. Leukemia, 2019, 33, 1783-1796.	3.3	54

#	Article	IF	CITATIONS
19	PGAM5 is a key driver of mitochondrial dysfunction in experimental lung fibrosis. Cellular and Molecular Life Sciences, 2019, 76, 4783-4794.	2.4	20
20	Human Double-Negative Regulatory T-Cells Induce a Metabolic and Functional Switch in Effector T-Cells by Suppressing mTOR Activity. Frontiers in Immunology, 2019, 10, 883.	2.2	32
21	Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity. Haematologica, 2019, 104, 1830-1840.	1.7	17
22	A novel immunoregulatory function of beta-2-microglobulin as a promoter of myeloid derived suppressor cell induction. Leukemia, 2019, 33, 1282-1287.	3.3	1
23	D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. OncoImmunology, 2018, 7, e1445454.	2.1	97
24	Phenotypic and functional alterations of myeloidâ€derived suppressor cells during the disease course of multiple sclerosis. Immunology and Cell Biology, 2018, 96, 820-830.	1.0	38
25	Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia, 2018, 32, 2445-2458.	3.3	36
26	CD33/CD3-bispecific T-cell engaging (BiTE®) antibody construct targets monocytic AML myeloid-derived suppressor cells. , 2018, 6, 116.		61
27	Regulation of Energy Metabolism during Early B Lymphocyte Development. International Journal of Molecular Sciences, 2018, 19, 2192.	1.8	25
28	IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent manner. Oncotarget, 2018, 9, 13125-13138.	0.8	58
29	A defined metabolic state in pre B cells governs B-cell development and is counterbalanced by Swiprosin-2/EFhd1. Cell Death and Differentiation, 2017, 24, 1239-1252.	5.0	52
30	CLL-cell-mediated MDSC induction by exosomal miR-155 transfer is disrupted by vitamin D. Leukemia, 2017, 31, 985-988.	3.3	62
31	The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia, 2017, 31, 470-478.	3.3	78
32	Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget, 2017, 8, 97439-97463.	0.8	18
33	Mesenchymal Stromal Cells Disrupt mTOR-Signaling and Aerobic Glycolysis During T-Cell Activation. Stem Cells, 2016, 34, 516-521.	1.4	39
34	Coexpressed Catalase Protects Chimeric Antigen Receptor–Redirected T Cells as well as Bystander Cells from Oxidative Stress–Induced Loss of Antitumor Activity. Journal of Immunology, 2016, 196, 759-766.	0.4	164
35	Analysis of dendritic cell subpopulations in follicular lymphoma with respect to the tumor immune microenvironment. Leukemia and Lymphoma, 2016, 57, 2150-2160.	0.6	9
36	CXCL12 promotes glycolytic reprogramming in acute myeloid leukemia cells via the CXCR4/mTOR axis. Leukemia, 2016, 30, 1788-1792.	3.3	31

#	Article	IF	CITATIONS
37	Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget, 2016, 7, 52061-52084.	0.8	11
38	Methylcholanthrene-Induced Sarcomas Develop Independently from NOX2-Derived ROS. PLoS ONE, 2015, 10, e0129786.	1.1	11
39	Stromal cell–mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood, 2015, 125, 3432-3436.	0.6	76
40	Contact-Dependent Depletion of Hydrogen Peroxide by Catalase Is a Novel Mechanism of Myeloid-Derived Suppressor Cell Induction Operating in Human Hepatic Stellate Cells. Journal of Immunology, 2015, 194, 2578-2586.	0.4	18
41	Organometallic nucleosides induce non-classical leukemic cell death that is mitochondrial-ROS dependent and facilitated by TCL1-oncogene burden. Molecular Cancer, 2015, 14, 114.	7.9	23
42	Increased incidence of chronic GvHD and CMV disease in patients with vitamin D deficiency before allogeneic stem cell transplantation. Bone Marrow Transplantation, 2015, 50, 1217-1223.	1.3	50
43	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	1.6	131
44	Distinct von Hippel-Lindau gene and hypoxia-regulated alterations in gene and protein expression patterns of renal cell carcinoma and their effects on metabolism. Oncotarget, 2015, 6, 11395-11406.	0.8	23
45	Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood, 2014, 123, 2663-2672.	0.6	164
46	CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood, 2014, 124, 750-760.	0.6	206
47	Immunosuppressive CD14+HLA-DRlow/neg IDO+ myeloid cells in patients following allogeneic hematopoietic stem cell transplantation. Leukemia, 2013, 27, 377-388.	3.3	105
48	Alterations in the Cellular Immune Compartment of Patients Treated with Third-Party Mesenchymal Stromal Cells Following Allogeneic Hematopoietic Stem Cell Transplantation. Stem Cells, 2013, 31, 1715-1725.	1.4	75
49	Myeloid-derived suppressor cells in allogeneic hematopoietic stem cell transplantation. Oncolmmunology, 2013, 2, e25009.	2.1	13
50	Treatment of Familial Hemophagocytic Lymphohistiocytosis with Third-Party Mesenchymal Stromal Cells. Stem Cells and Development, 2012, 21, 3147-3151.	1.1	19
51	Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews Immunology, 2012, 12, 383-396.	10.6	811
52	High expression of GCLC is associated with malignant melanoma of low oxidative phenotype and predicts a better prognosis. Journal of Molecular Medicine, 2012, 90, 935-944.	1.7	28
53	Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood, 2011, 117, 857-861.	0.6	137
54	The impact of inflammatory licensing on heme oxygenase-1–mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 2011, 117, 4826-4835.	0.6	191

#	Article	IF	CITATIONS
55	Intratumoral forkhead box P3â€positive regulatory T cells predict poor survival in cyclooxygenaseâ€2–positive uveal melanoma. Cancer, 2010, 116, 2224-2233.	2.0	96
56	Immature Immunosuppressive CD14+HLA-DRâ^'/low Cells in Melanoma Patients Are Stat3hi and Overexpress CD80, CD83, and DC-Sign. Cancer Research, 2010, 70, 4335-4345.	0.4	366
57	Regulatory T Cells in Cancer. Advances in Cancer Research, 2010, 107, 57-117.	1.9	320
58	Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress–induced cell death. Blood, 2009, 113, 3542-3545.	0.6	153
59	Response:Resistance of naturally occurring regulatory T cells toward oxidative stress: possible link with intracellular catecholamine content and implications for cancer therapy. Blood, 2009, 114, 488-489.	0.6	1