Phang Sook-Wai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744603/publications.pdf Version: 2024-02-01

PHANC SOOK-MAL

#	Article	IF	CITATIONS
1	Development of grafted rubber/polyaniline/carboxymethyl cellulose film as green conductive polymer film. Polymer Bulletin, 2022, 79, 3829-3846.	3.3	6
2	Starch/Polyaniline Biopolymer Film as Potential Intelligent Food Packaging with Colourimetric Ammonia Sensor. Polymers, 2022, 14, 1122.	4.5	11
3	Development of water-based polyaniline sensor for hydrazine detection. Sensors and Actuators A: Physical, 2021, 317, 112460.	4.1	11
4	Highly Visible Light Active Ternary Polyaniline-TiO2-Fe3O4 Nanotube/Nanorod for Photodegradation of Reactive Black 5 Dyes. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2168-2181.	3.7	10
5	Adhesion improvement of polyaniline counter electrode in dye-sensitized solar cell using bio-based alkyd. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
6	Chemical treatment of grafted rubberâ€based conductive polymer film for homogeneity improvement. Journal of Applied Polymer Science, 2021, 138, 51455.	2.6	1
7	Effect of Acid Dopants Toward Polyaniline Based Optical Sensor for Lead Detection. Polymer Science - Series A, 2021, 63, 485-492.	1.0	3
8	Crazing Effect on the Bio-Based Conducting Polymer Film. Polymers, 2021, 13, 3425.	4.5	5
9	Effects of synthesised polyaniline (PAni) contents on the anti-static properties of PAni-based polylactic acid (PLA) films. RSC Advances, 2020, 10, 39693-39699.	3.6	24
10	Microwave absorption properties of polyaniline (PAni) with various amount of carbonaceous material (CM). Polymer Bulletin, 2020, 78, 6351.	3.3	1
11	Polyaniline (PAni) optical sensor in chloroform detection. Sensors and Actuators B: Chemical, 2018, 261, 97-105.	7.8	40
12	Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes. Polymer Composites, 2018, 39, 1283-1291.	4.6	6
13	Microwave Absorption Properties of Polyaniline/Titanium Dioxide (PAni/TiO ₂) Doped with Different Types of Fullerenes. Macromolecular Symposia, 2018, 382, 1800089.	0.7	3
14	Effect of Titanium Dioxide on Adhesion and Conductivity Behavior of Polyaniline/Alkyd Composite for Solar Cell Application. Macromolecular Symposia, 2018, 382, 1800100.	0.7	0
15	Effect of Polymerization Temperatures on Polyaniline Coated Fiber Bragg Grating Sensor for Chloroform Detection. Macromolecular Symposia, 2018, 382, 1800088.	0.7	4
16	Effect of Titanium Dioxide and Carbon Nanotubes on Polyaniline Nanocomposites for Heavy Metals Removal. Macromolecular Symposia, 2018, 382, 1800087.	0.7	5
17	Electrically conductive palm oil-based coating with UV curing ability. Progress in Organic Coatings, 2017, 112, 9-17.	3.9	20
18	Application of a Palm Oil-Based Alkyd for the Improvement of Polyaniline Properties. Polymers and Polymer Composites, 2017, 25, 537-544.	1.9	4

PHANG SOOK-WAI

#	Article	IF	CITATIONS
19	Application of Fiber Bragg Grating Sensor coated with Polyaniline as an optical Sensor for chloroform detection. Polymers and Polymer Composites, 2017, 25, 555-562.	1.9	3
20	Synthesis of Polyaniline-TiO ₂ Nanocomposites and Their Application in Photocatalytic Degradation. Polymers and Polymer Composites, 2017, 25, 507-514.	1.9	43
21	Effect of Carbon Nanotubes' Dimension on Microwave Absorption Property of Polyaniline Nanocomposites. Polymers and Polymer Composites, 2017, 25, 527-536.	1.9	Ο
22	Morphology, Conductivity and Microwave Absorption Behavior of Polyaniline Nanocomposites after Chemical Treatment. Polymers and Polymer Composites, 2017, 25, 545-554.	1.9	6
23	Synthesis of Water-soluble Polyaniline by Using Different Types of Cellulose Derivatives. Polymers and Polymer Composites, 2017, 25, 515-520.	1.9	22
24	CHEMICAL SENSOR FOR HYDRAZINE DETECTION USING POLYANILINE THIN FILM. Malaysian Journal of Analytical Sciences, 2017, 21, .	0.1	2
25	Molecular conformation and UV–visible absorption spectrum of emeraldine salt polyaniline as a hydrazine sensor. Integrated Ferroelectrics, 2016, 175, 202-210.	0.7	2
26	Microwave Absorption Study of Polyaniline Nanocomposites with Different Dimension of Multiwalled Carbon Nanotubes. Materials Science Forum, 2016, 846, 465-470.	0.3	0
27	Effects of the Dopant Ratio on Polyaniline Coated Fiber Bragg Grating for pH detection. Synthetic Metals, 2016, 211, 132-141.	3.9	11
28	Effect of dopant concentration on polyaniline for hydrazine detection. Materials Science in Semiconductor Processing, 2015, 33, 24-31.	4.0	21
29	Enhancement of polyaniline properties by different polymerization temperatures in hydrazine detection. Journal of Applied Polymer Science, 2015, 132, .	2.6	15
30	Synthesis, Characterization, Effect of Triaryl Ring Substituents Groups on Thermal and Spectral Properties of New Soluble Triphenylamine-Based Aromatic Polyamides. Asian Journal of Chemistry, 2014, 26, 85-92.	0.3	0
31	Synthesis of Spectral, Thermal and Electrochemical Properties of New Thermally Stable: Blue Light Emitting Materials Based Aromatic Polyamide. Asian Journal of Chemistry, 2014, 26, 3854-3862.	0.3	Ο
32	Conducting polymer coated optical microfiber sensor for alcohol detection. Sensors and Actuators A: Physical, 2014, 205, 58-62.	4.1	45
33	A Polyaniline-Coated Integrated Microfiber Resonator for UV Detection. IEEE Sensors Journal, 2013, 13, 2020-2025.	4.7	9
34	Improvement of microwave absorption for PAni/HA/TiO2 /Fe3 O4 nanocomposite after chemical treatment. Polymer Composites, 2013, 34, 1186-1194.	4.6	26
35	Preparation of polyaniline/TiO ₂ nanocomposite film with good adhesion behavior for dyeâ€sensitized solar cell application. Polymer Composites, 2013, 34, 1884-1891.	4.6	16
36	Fabrication and characterization of a dual layer multiple refractive index benzocyclobutene polymer platform for integrated optical devices. Optical Materials, 2012, 34, 1735-1741.	3.6	4

PHANG SOOK-WAI

#	Article	IF	CITATIONS
37	Tapered plastic multimode fiber sensor for salinity detection. Sensors and Actuators A: Physical, 2011, 171, 219-222.	4.1	79
38	Fiber optic chemical sensor using fiber coupler probe based on intensity modulation for alcohol detection. Microwave and Optical Technology Letters, 2011, 53, 1935-1938.	1.4	5
39	Microwave absorption property of polyaniline nanocomposites containing TiO ₂ and Fe ₃ O ₄ nanoparticles after FeCl ₃ 6H ₂ O treatment. Polymer Composites, 2010, 31, 516-523.	4.6	30
40	Effect of Fe ₃ O ₄ and TiO ₂ addition on the microwave absorption property of polyaniline micro/nanocomposites. Polymers for Advanced Technologies, 2009, 20, 550-557.	3.2	68
41	Morphology studies of doped polyaniline micro/nanocomposites containing TiO2nanoparticles and Fe3O4microparticles. Polymer Composites, 2009, 30, 970-975.	4.6	6
42	Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Current Applied Physics, 2008, 8, 391-394.	2.4	147
43	Development and Investigation of Polyaniline Micro/nanocomposites that Possess Moderate Conductivity, Dielectric and Magnetic Properties. Polymer Journal, 2008, 40, 25-32.	2.7	8
44	Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synthetic Metals, 2008, 158, 251-258.	3.9	123
45	Applications of polyaniline doubly doped with p-toluene sulphonic acid and dichloroacetic acid as microwave absorbing and shielding materials. Materials Chemistry and Physics, 2007, 104, 327-335.	4.0	101
46	Poly(4,4′-diphenylene diphenylvinylene) as a non-magnetic microwave absorbing conjugated polymer. Thin Solid Films, 2005, 477, 125-130.	1.8	45
47	Microwave properties of poly(4,4′-diphenylene diphenylvinylene). Polymer Testing, 2004, 23, 275-279.	4.8	20
48	Effect of functional groups in the PAni-cellulose derivatives-based sensor in hydrazine detection. Polymer Bulletin, 0, , 1.	3.3	5