
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744510/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In Vitro</i> Antifungal Combination of Terbinafine with Itraconazole against Isolates of <i>Trichophyton</i> Species. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0144921.	1.4	7
2	Fungal infections in mechanically ventilated patients with COVID-19 during the first wave: the French multicentre MYCOVID study. Lancet Respiratory Medicine,the, 2022, 10, 180-190.	5.2	161
3	Extensive Dermatophytosis Caused by Terbinafine-Resistant <i>Trichophyton indotineae</i> , France. Emerging Infectious Diseases, 2022, 28, 229-233.	2.0	53
4	Comment on: Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2022, 77, 1209-1210.	1.3	6
5	In Vitro Activity of Amphotericin B in Combination with Colistin against Fungi Responsible for Invasive Infections. Journal of Fungi (Basel, Switzerland), 2022, 8, 115.	1.5	9
6	Antifungal Drugs TDM: Trends and Update. Therapeutic Drug Monitoring, 2022, 44, 166-197.	1.0	22
7	Terbinafine Resistance in Dermatophytes: A French Multicenter Prospective Study. Journal of Fungi (Basel, Switzerland), 2022, 8, 220.	1.5	33
8	Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. Journal of Antimicrobial Chemotherapy, 2022, 77, 2053-2073.	1.3	27
9	Recent Developments in the Diagnosis of Mucormycosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 457.	1.5	13
10	In Vitro Synergy of Isavuconazole Combined With Colistin Against Common Candida Species. Frontiers in Cellular and Infection Microbiology, 2022, 12, 892893.	1.8	1
11	Aspergillus detection in airways of ICU COVID-19 patients: To treat or not to treat?. Journal De Mycologie Medicale, 2022, 32, 101290.	0.7	3
12	Synergistic In Vitro Interaction of Isavuconazole and Isoquercitrin against Candida glabrata. Journal of Fungi (Basel, Switzerland), 2022, 8, 525.	1.5	0
13	Species Identification and In Vitro Antifungal Susceptibility of Paecilomyces/Purpureocillium Species Isolated from Clinical Respiratory Samples: A Multicenter Study. Journal of Fungi (Basel, Switzerland), 2022, 8, 684.	1.5	7
14	Trends in the Prevalence of Amphotericin B-Resistance (AmBR) among Clinical Isolates of Aspergillus Species. Journal De Mycologie Medicale, 2022, 32, 101310.	0.7	13
15	Invasive Aspergillosis Due to <i>Aspergillus</i> Section <i>Usti</i> : A Multicenter Retrospective Study. Clinical Infectious Diseases, 2021, 72, 1379-1385.	2.9	28
16	Scedosporiosis/lomentosporiosis observational study (SOS): Clinical significance of <i>Scedosporium</i> species identification. Medical Mycology, 2021, 59, 486-497.	0.3	26
17	<i>Galleria mellonella</i> as a screening tool to study virulence factors of <i>Aspergillus fumigatus</i> . Virulence, 2021, 12, 818-834.	1.8	33
18	Species distribution and antifungal susceptibility of <i>Aspergillus</i> clinical isolates in Lebanon. Future Microbiology, 2021, 16, 13-26.	1.0	5

#	Article	IF	CITATIONS
19	Techniques for the Assessment of In Vitro and In Vivo Antifungal Combinations. Journal of Fungi (Basel, Switzerland), 2021, 7, 113.	1.5	29
20	Azole Resistance in Clinical and Environmental Aspergillus Isolates from the French West Indies (Martinique). Journal of Fungi (Basel, Switzerland), 2021, 7, 355.	1.5	4
21	Microsporidiosis after liver transplantation: A French nationwide retrospective study. Transplant Infectious Disease, 2021, 23, e13665.	0.7	3
22	A review of significance of <i>Aspergillus</i> detection in airways of ICU COVIDâ€19 patients. Mycoses, 2021, 64, 980-988.	1.8	20
23	Analysis of Microbiota and Mycobiota in Fungal Ball Rhinosinusitis: Specific Interaction between Aspergillus fumigatus and Haemophilus influenza?. Journal of Fungi (Basel, Switzerland), 2021, 7, 550.	1.5	9
24	Epidemiological and clinical study of microsporidiosis in French kidney transplant recipients from 2005 to 2019: TRANSâ€&PORE registry. Transplant Infectious Disease, 2021, 23, e13708.	0.7	5
25	Etest ECVs/ECOFFs for Detection of Resistance in Prevalent and Three Nonprevalent <i>Candida</i> spp. to Triazoles and Amphotericin B and Aspergillus spp. to Caspofungin: Further Assessment of Modal Variability. Antimicrobial Agents and Chemotherapy, 2021, 65, e0109321.	1.4	12
26	MixInYeast: A Multicenter Study on Mixed Yeast Infections. Journal of Fungi (Basel, Switzerland), 2021, 7, 13.	1.5	14
27	Azole resistance in Aspergillus fumigatus isolates from respiratory specimens in Lyon University Hospitals, France: prevalence and mechanisms involved. International Journal of Antimicrobial Agents, 2021, 58, 106447.	1.1	7
28	In Vivo Efficacy of Voriconazole in a Galleria mellonella Model of Invasive Infection Due to Azole-Susceptible or Resistant Aspergillus fumigatus Isolates. Journal of Fungi (Basel, Switzerland), 2021, 7, 1012.	1.5	6
29	In vitro synergy of echinocandins with triazoles against fluconazole-resistant Candida parapsilosis complex isolates. Journal of Global Antimicrobial Resistance, 2020, 21, 331-334.	0.9	2
30	Pneumocystis Infection Outbreaks in Organ Transplantation Units in France: A Nation-Wide Survey. Clinical Infectious Diseases, 2020, 70, 2216-2220.	2.9	24
31	In Vitro Interaction between Isavuconazole and Tacrolimus, Cyclosporin A, or Sirolimus against Aspergillus Species. Journal of Fungi (Basel, Switzerland), 2020, 6, 103.	1.5	14
32	Modulated Response of Aspergillus fumigatus and Stenotrophomonas maltophilia to Antimicrobial Agents in Polymicrobial Biofilm. Frontiers in Cellular and Infection Microbiology, 2020, 10, 574028.	1.8	9
33	Colistin and Isavuconazole Interact Synergistically In Vitro against Aspergillus nidulans and Aspergillus niger. Microorganisms, 2020, 8, 1447.	1.6	8
34	In vitro synergy of isavuconazole in combination with colistin against Candida auris. Scientific Reports, 2020, 10, 21448.	1.6	21
35	Candida albicans and Candida dubliniensis Show Different Trailing Effect Patterns When Exposed to Echinocandins and Azoles. Frontiers in Microbiology, 2020, 11, 1286.	1.5	6
36	Post-traumatic Curvularia sp. arthritis in an immunocompetent adult. Journal De Mycologie Medicale, 2020, 30, 100967.	0.7	1

#	Article	IF	CITATIONS
37	Galleria mellonella for the Evaluation of Antifungal Efficacy against Medically Important Fungi, a Narrative Review. Microorganisms, 2020, 8, 390.	1.6	61
38	Should Etest MICs for Yeasts Be Categorized by Reference (BPs/ECVs) or by Etest (ECVs) Cutoffs as Determinants of Emerging Resistance?. Current Fungal Infection Reports, 2020, 14, 120-129.	0.9	5
39	Colistin interacts synergistically with echinocandins against Candida auris. International Journal of Antimicrobial Agents, 2020, 55, 105901.	1.1	37
40	Antifungal susceptibility testing practices in mycology laboratories in France, 2018. Journal De Mycologie Medicale, 2020, 30, 100970.	0.7	2
41	Invasive fungal diseases during COVID-19: We should be prepared. Journal De Mycologie Medicale, 2020, 30, 100971.	0.7	250
42	Multicentre validation of a EUCAST method for the antifungal susceptibility testing of microconidia-forming dermatophytes. Journal of Antimicrobial Chemotherapy, 2020, 75, 1807-1819.	1.3	37
43	Comparison of the MICs Obtained by Gradient Concentration Strip and EUCAST Methods for Four Azole Drugs and Amphotericin B against Azole-Susceptible and -Resistant Aspergillus Section Fumigati Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	5
44	Evaluation of the Gradient Concentration Strip Method for Antifungal Susceptibility Testing of Isavuconazole and Comparators for <i>Mucorales</i> Species. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	6
45	Multicentre study to determine the Etest epidemiological cut-off values of antifungal drugs in Candida spp. and Aspergillus fumigatus species complex. Clinical Microbiology and Infection, 2019, 25, 1546-1552.	2.8	24
46	Identification of Mucorales by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Journal of Fungi (Basel, Switzerland), 2019, 5, 56.	1.5	17
47	Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infectious Diseases, The, 2019, 19, e405-e421.	4.6	970
48	Antifungal combinations in Mucorales: A microbiological perspective. Mycoses, 2019, 62, 746-760.	1.8	30
49	In vitro interactions between isavuconazole and tacrolimus, cyclosporin A or sirolimus against Mucorales. Journal of Antimicrobial Chemotherapy, 2019, 74, 1921-1927.	1.3	18
50	<i>In Vitro</i> Antifungal Combination of Flucytosine with Amphotericin B, Voriconazole, or Micafungin against Candida auris Shows No Antagonism. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	39
51	Antifungal Susceptibly Testing by Concentration Gradient Strip Etest Method for Fungal Isolates: A Review. Journal of Fungi (Basel, Switzerland), 2019, 5, 108.	1.5	33
52	Occurrence and species diversity of human-pathogenic Mucorales in commercial food-stuffs purchased in Paris area. Medical Mycology, 2019, 57, 739-744.	0.3	7
53	Prevalence, geographic risk factor, and development of a standardized protocol for fungal isolation in cystic fibrosis: Results from the international prospective study "MFIP― Journal of Cystic Fibrosis, 2019, 18, 212-220.	0.3	38
54	Method-Dependent Epidemiological Cutoff Values for Detection of Triazole Resistance in <i>Candida</i> and <i>Aspergillus</i> Species for the Sensititre YeastOne Colorimetric Broth and Etest Agar Diffusion Methods. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	59

#	Article	IF	CITATIONS
55	Indifferent effect of nonsteroidal anti-inflammatory drugs (NSAIDs) combined with fluconazole against multidrug-resistant Candida auris. Current Medical Mycology, 2019, 5, 26-30.	0.8	6
56	Comparative virulence of <i>Candida auris</i> with <i>Candida haemulonii</i> , <i> Candida glabrata</i> and <i>Candida albicans</i> in a murine model. Mycoses, 2018, 61, 377-382.	1.8	98
57	Prosthetic Valve Candida spp. Endocarditis: New Insights Into Long-term Prognosis—The ESCAPE Study. Clinical Infectious Diseases, 2018, 66, 825-832.	2.9	40
58	Species Identification and In Vitro Antifungal Susceptibility of Aspergillus terreus Species Complex Clinical Isolates from a French Multicenter Study. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	16
59	Posaconazole MIC Distributions for Aspergillus fumigatus Species Complex by Four Methods: Impact of <i>cyp51A</i> Mutations on Estimation of Epidemiological Cutoff Values. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	30
60	Occurrence and species distribution of pathogenic Mucorales in unselected soil samples from France. Medical Mycology, 2018, 56, 315-321.	0.3	17
61	In vitro combination of voriconazole with micafungin against azole-resistant clinical isolates of Aspergillus fumigatus from different geographical regions. Diagnostic Microbiology and Infectious Disease, 2018, 91, 266-268.	0.8	8
62	Azole Resistance in Aspergillus fumigatus in Patients with Cystic Fibrosis: A Matter of Concern?. Mycopathologia, 2018, 183, 151-160.	1.3	40
63	<i>In Vitro</i> Combination of Isavuconazole with Echinocandins against Azole-Susceptible and -Resistant Aspergillus spp. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	12
64	<scp>PCR</scp> â€based detection of <i>Aspergillus fumigatus</i> and absence of azole resistance due to <scp>TR</scp> ₃₄ /L98H in a french multicenter cohort of 137 patients with fungal rhinosinusitis. Mycoses, 2018, 61, 30-34.	1.8	14
65	In vitro antifungal activity of amphotericin B and 11 comparators against <i>Aspergillus terreus</i> species complex. Mycoses, 2018, 61, 134-142.	1.8	29
66	Population Structure of Candida parapsilosis: No Genetic Difference Between French and Uruguayan Isolates Using Microsatellite Length Polymorphism. Mycopathologia, 2018, 183, 381-390.	1.3	8
67	Interactions of Aspergillus fumigatus and Stenotrophomonas maltophilia in an in vitro Mixed Biofilm Model: Does the Strain Matter?. Frontiers in Microbiology, 2018, 9, 2850.	1.5	29
68	Aspergillus pseudodeflectus: a new human pathogen in liver transplant patients. BMC Infectious Diseases, 2018, 18, 648.	1.3	6
69	Candida auris: An emerging drug resistant yeast–ÂA mini-review. Journal De Mycologie Medicale, 2018, 28, 568-573.	0.7	70
70	Human cryptosporidiosis in immunodeficient patients in France (2015–2017). Experimental Parasitology, 2018, 192, 108-112.	0.5	25
71	An ultra performance liquid chromatography-tandem mass spectrometry method for the therapeutic drug monitoring of isavuconazole and seven other antifungal compounds in plasma samples. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1046, 26-33.	1.2	32
72	Clinical outcome of cystic fibrosis patients colonized by <i>Scedosporium</i> species following lung transplantation: A singleâ€center 15â€year experience. Transplant Infectious Disease, 2017, 19, e12738.	0.7	28

#	Article	IF	CITATIONS
73	Predisposing factors and outcome of uncommon yeast species-related fungaemia based on an exhaustive surveillance programme (2002–14). Journal of Antimicrobial Chemotherapy, 2017, 72, 1784-1793.	1.3	57
74	Echinocandin Resistance in Candida Species Isolates from Liver Transplant Recipients. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	35
75	<i>In Vitro</i> Interactions of Echinocandins with Triazoles against Multidrug-Resistant <i>Candida auris</i> . Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	75
76	Antifungal resistance in mucorales. International Journal of Antimicrobial Agents, 2017, 50, 617-621.	1.1	87
77	Molecular Diagnosis of Invasive Aspergillosis and Detection of Azole Resistance by a Newly Commercialized PCR Kit. Journal of Clinical Microbiology, 2017, 55, 3210-3218.	1.8	56
78	Multicenter Study of Method-Dependent Epidemiological Cutoff Values for Detection of Resistance in Candida spp. and Aspergillus spp. to Amphotericin B and Echinocandins for the Etest Agar Diffusion Method. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	47
79	<i>In Vitro</i> Activities of Novel Azole Compounds ATTAF-1 and ATTAF-2 against Fluconazole-Susceptible and -Resistant Isolates of Candida Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	22
80	Preferential expression of domain cassettes 4, 8 and 13 of Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria imported in France. Clinical Microbiology and Infection, 2017, 23, 211.e1-211.e4.	2.8	6
81	Fatal Pulmonary Mucormycosis due to Rhizopus homothallicus. Mycopathologia, 2017, 182, 907-913.	1.3	8
82	Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm. PLoS ONE, 2016, 11, e0166325.	1.1	30
83	Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor. Scientific Reports, 2016, 6, 26490.	1.6	33
84	Novel Taxa Associated with Human Fungal Black-Grain Mycetomas: Emarellia grisea gen. nov., sp. nov., and Emarellia paragrisea sp. nov. Journal of Clinical Microbiology, 2016, 54, 1738-1745.	1.8	33
85	Multicenter Comparison of the Etest and EUCAST Methods for Antifungal Susceptibility Testing of Candida Isolates to Micafungin. Antimicrobial Agents and Chemotherapy, 2016, 60, 5088-5091.	1.4	10
86	Next-generation sequencing offers new insights into the resistance of <i>Candida</i> spp. to echinocandins and azoles. Journal of Antimicrobial Chemotherapy, 2015, 70, 2556-2565.	1.3	44
87	Prospective evaluation of azole resistance in <i>Aspergillus fumigatus</i> clinical isolates in France: Table 1 Medical Mycology, 2015, 53, 593-596.	0.3	35
88	Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition To Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of Mucorales. Antimicrobial Agents and Chemotherapy, 2015, 59, 1745-1750.	1.4	97
89	In vitro activity of miltefosine in combination with voriconazole or amphotericin B against clinical isolates of Scedosporium spp Journal of Medical Microbiology, 2015, 64, 309-311.	0.7	28
90	Prospective Multicenter International Surveillance of Azole Resistance in <i>Aspergillus fumigatus</i> . Emerging Infectious Diseases, 2015, 21, 1041-1044.	2.0	302

#	Article	IF	CITATIONS
91	Molecular identification of fungi found on decomposed human bodies in forensic autopsy cases. International Journal of Legal Medicine, 2015, 129, 785-791.	1.2	14
92	Current Status of Diagnosis of Mucormycosis: Update on Molecular Methods. Current Fungal Infection Reports, 2014, 8, 353-359.	0.9	4
93	ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clinical Microbiology and Infection, 2014, 20, 27-46.	2.8	383
94	ESCMID and ECMM joint clinical guidelines for the diagnosis and management of systemic phaeohyphomycosis: diseases caused by black fungi. Clinical Microbiology and Infection, 2014, 20, 47-75.	2.8	262
95	ESCMID†and ECMM‡ joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clinical Microbiology and Infection, 2014, 20, 5-26.	2.8	547
96	ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clinical Microbiology and Infection, 2014, 20, 76-98.	2.8	400
97	Acremonium sclerotigenum-Acremonium egyptiacum: a multi-resistant fungal pathogen complicating the course of aplastic anaemia. Clinical Microbiology and Infection, 2014, 20, O30-O32.	2.8	10
98	<i>In Vitro</i> Combination of Voriconazole and Miltefosine against Clinically Relevant Molds. Antimicrobial Agents and Chemotherapy, 2014, 58, 6996-6998.	1.4	31
99	Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area,) Tj ETQq1 1 0.784	314 rgBT	/Overlock 10
100	Emergence of echinocandin-resistant Candida spp. in a hospital setting: a consequence of 10Âyears of increasing use of antifungal therapy?. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1489-1496.	1.3	62
101	Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China. Poultry Science, 2014, 93, 12-15.	1.5	18
102	Rapid Emergence of Echinocandin Resistance during Candida kefyr Fungemia Treatment with Caspofungin. Antimicrobial Agents and Chemotherapy, 2013, 57, 2380-2382.	1.4	46
103	Interlaboratory Variability of Caspofungin MICs for Candida spp. Using CLSI and EUCAST Methods: Should the Clinical Laboratory Be Testing This Agent?. Antimicrobial Agents and Chemotherapy, 2013, 57, 5836-5842.	1.4	192
104	Healthcare-Associated Mucormycosis. Clinical Infectious Diseases, 2012, 54, S44-S54.	2.9	223
105	<i>Candida</i> spp. with Acquired Echinocandin Resistance, France, 2004–20101. Emerging Infectious Diseases, 2012, 18, 86-90.	2.0	116
106	Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales. Journal of Clinical Microbiology, 2012, 50, 66-75.	1.8	134
107	A Global Analysis of Mucormycosis in France: The RetroZygo Study (2005-2007). Clinical Infectious Diseases, 2012, 54, S35-S43.	2.9	398
108	<i>In Vitro</i> Combination of Anidulafungin and Voriconazole against Intrinsically Azole-Susceptible and -Resistant Aspergillus spp. Antimicrobial Agents and Chemotherapy, 2012, 56, 4500-4503.	1.4	16

#	Article	IF	CITATIONS
109	Estimating the burden of mucormycosis infections in France (2005–2007) through a capture-recapture method on laboratory and administrative data. Revue D'Epidemiologie Et De Sante Publique, 2012, 60, 383-387.	0.3	18
110	Mucormycosis after allogeneic haematopoietic stem cell transplantation: a French Multicentre Cohort Study (2003-2008). Clinical Microbiology and Infection, 2012, 18, E396-E400.	2.8	68
111	ECIL-3 classical diagnostic procedures for the diagnosis of invasive fungal diseases in patients with leukaemia. Bone Marrow Transplantation, 2012, 47, 1030-1045.	1.3	74
112	Pneumocystosis: a network survey in the Paris area 2003–2008. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 673-675.	1.3	23
113	Recent Exposure to Caspofungin or Fluconazole Influences the Epidemiology of Candidemia: a Prospective Multicenter Study Involving 2,441 Patients. Antimicrobial Agents and Chemotherapy, 2011, 55, 532-538.	1.4	294
114	Imported Acquired Immunodeficiency Syndrome–Related Histoplasmosis in Metropolitan France: A Comparison of Pre–Highly Active Anti-Retroviral Therapy and Highly Active Anti-Retroviral Therapy Eras. American Journal of Tropical Medicine and Hygiene, 2011, 85, 934-941.	0.6	40
115	Increased Mortality in Young Candidemia Patients Associated with Presence of a Candida albicans General-Purpose Genotype. Journal of Clinical Microbiology, 2011, 49, 3250-3256.	1.8	28
116	Prior Caspofungin Exposure in Patients with Hematological Malignancies Is a Risk Factor for Subsequent Fungemia Due to Decreased Susceptibility in Candida spp.: a Case-Control Study in Paris, France. Antimicrobial Agents and Chemotherapy, 2011, 55, 5358-5361.	1.4	39
117	Successful Triple Combination Therapy of Disseminated Absidia corymbifera Infection in an Adolescent With Osteosarcoma. Journal of Pediatric Hematology/Oncology, 2010, 32, 131-133.	0.3	21
118	Comparison of antifungal MICs for yeasts obtained using the EU-CAST method in a reference laboratory and the Etest in nine different hospital laboratories. Clinical Microbiology and Infection, 2010, 16, 863-869.	2.8	33
119	Molecular Detection and Identification of <i>Zygomycetes</i> Species from Paraffin-Embedded Tissues in a Murine Model of Disseminated Zygomycosis: a Collaborative European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) Evaluation. Journal of Clinical Microbiology, 2010, 48, 2043-2046.	1.8	83
120	<i>Geosmithia argillacea</i> : an Emerging Pathogen in Patients with Cystic Fibrosis. Journal of Clinical Microbiology, 2010, 48, 2381-2386.	1.8	68
121	Zygomycosis After Allogeneic Hematopoietic Stem Cell Transplantation: A French Multicenter Cohort Study (2003-2008). Blood, 2010, 116, 1263-1263.	0.6	8
122	In Vitro Interactions between Antifungals and Immunosuppressive Drugs against Zygomycetes. Antimicrobial Agents and Chemotherapy, 2009, 53, 3549-3551.	1.4	51
123	Sequence-Based Identification of <i>Aspergillus, Fusarium</i> , and <i>Mucorales</i> Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here?. Journal of Clinical Microbiology, 2009, 47, 877-884.	1.8	299
124	Increasing Incidence of Zygomycosis (Mucormycosis), France, 1997–2006. Emerging Infectious Diseases, 2009, 15, 1395-1401.	2.0	336
125	Molecular and Phenotypic Evaluation of <i>Lichtheimia corymbifera</i> (Formerly <i>Absidia) Tj ETQq1 1 0.7845 ramosa</i> . Journal of Clinical Microbiology, 2009, 47, 3862-3870.	814 rgBT /0 1.8	Overlock 10 86
126	Voriconazole pharmacokinetic variability in cystic fibrosis lung transplant patients. Transplant Infectious Disease, 2009, 11, 211-219.	0.7	57

#	Article	IF	CITATIONS
127	Molecular tools for identification of Zygomycetes and the diagnosis of zygomycosis. Clinical Microbiology and Infection, 2009, 15, 66-70.	2.8	76
128	Réseau pneumocystose francilienÂ: bilan de cinq années de surveillance (2003–2007). Journal De Mycologie Medicale, 2009, 19, 290-293.	0.7	7
129	An increasing trend of cutaneous zygomycosis caused by <i>Mycocladus corymbifer</i> (formerly <i>Absidia corymbifera</i>): report of two cases and review of primary cutaneous <i>Mycocladus</i> infections. Medical Mycology, 2009, 47, 532-538.	0.3	24
130	EUCAST Technical Note on fluconazole. Clinical Microbiology and Infection, 2008, 14, 193-195.	2.8	83
131	EUCAST Definitive Document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clinical Microbiology and Infection, 2008, 14, 398-405.	2.8	447
132	EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia–forming moulds. Clinical Microbiology and Infection, 2008, 14, 982-984.	2.8	323
133	EUCAST Technical Note on voriconazole. Clinical Microbiology and Infection, 2008, 14, 985-987.	2.8	51
134	Lack of evidence of endosymbiotic toxinâ€producing bacteria in clinical <i>Rhizopus</i> isolates. Mycoses, 2008, 51, 266-269.	1.8	29
135	Comparative In Vitro Activities of Caspofungin and Micafungin, Determined Using the Method of the European Committee on Antimicrobial Susceptibility Testing, against Yeast Isolates Obtained in France in 2005-2006. Antimicrobial Agents and Chemotherapy, 2008, 52, 778-781.	1.4	46
136	Associations antifongiques dans les candidoses et aspergilloses invasives. Reanimation: Journal De La Societe De Reanimation De Langue Francaise, 2008, 17, 259-266.	0.1	5
137	Failure of Deferasirox, an Iron Chelator Agent, Combined with Antifungals in a Case of Severe Zygomycosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 1585-1586.	1.4	30
138	Molecular Diagnosis of Saksenaea vasiformis Cutaneous Infection after Scorpion Sting in an Immunocompetent Adolescent. Journal of Clinical Microbiology, 2008, 46, 3169-3172.	1.8	40
139	Detection of Caspofungin Resistance in <i>Candida</i> spp. by Etest. Journal of Clinical Microbiology, 2008, 46, 2389-2392.	1.8	31
140	Mutations in the <i>fks1</i> Gene in <i>Candida albicans</i> , <i>C. tropicalis</i> , and <i>C. krusei</i> Correlate with Elevated Caspofungin MICs Uncovered in AM3 Medium Using the Method of the European Committee on Antibiotic Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2008, 52, 3092-3098.	1.4	123
141	<i>Saksenaea vasiformis</i> Infection, French Guiana. Emerging Infectious Diseases, 2008, 14, 342-344.	2.0	18
142	Clonal Population of Flucytosine-Resistant <i>Candida tropicalis</i> from Blood Cultures, Paris, France. Emerging Infectious Diseases, 2008, 14, 557-565.	2.0	50
143	Combination of Amphotericin B with Flucytosine Is Active In Vitro against Flucytosine-Resistant Isolates of Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 2007, 51, 383-385.	1.4	48
144	In Vitro Susceptibility to Posaconazole of 1,903 Yeast Isolates Recovered in France from 2003 to 2006 and Tested by the Method of the European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2007, 51, 3378-3380.	1.4	24

#	Article	IF	CITATIONS
145	Determinants of Disease Presentation and Outcome during Cryptococcosis: The CryptoA/D Study. PLoS Medicine, 2007, 4, e21.	3.9	338
146	Acquired resistance to echinocandins in Candida albicans: case report and review. Journal of Antimicrobial Chemotherapy, 2007, 59, 1076-1083.	1.3	136
147	Carbon Assimilation Profiles as a Tool for Identification of Zygomycetes. Journal of Clinical Microbiology, 2007, 45, 1433-1439.	1.8	52
148	Multicentre determination of quality control strains and quality control ranges for antifungal susceptibility testing of yeasts and filamentous fungi using the methods of the Antifungal Susceptibility Testing Subcommittee of the European Committee on Antimicrobial Susceptibility Testing (AFST-EUCAST). Clinical Microbiology and Infection, 2007, 13, 1018-1022.	2.8	45
149	The Zygomycetes. , 2007, , 159-183.		2
150	Pneumocystosis: Survey and DHPS Genotype Analysis in 14 Parisian Hospitals in 2003 and 2004. Journal of Eukaryotic Microbiology, 2006, 53, S106-S107.	0.8	5
151	Efficacy of Amphotericin B in Combination with Flucytosine against Flucytosine-Susceptible or Flucytosine-Resistant Isolates of Cryptococcus neoformans during Disseminated Murine Cryptococcosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 113-120.	1.4	65
152	Results Obtained with Various Antifungal Susceptibility Testing Methods Do Not Predict Early Clinical Outcome in Patients with Cryptococcosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2464-2470.	1.4	94
153	Molecular Identification of Black-Grain Mycetoma Agents. Journal of Clinical Microbiology, 2006, 44, 3517-3523.	1.8	89
154	Molecular Identification of Zygomycetes from Culture and Experimentally Infected Tissues. Journal of Clinical Microbiology, 2006, 44, 340-349.	1.8	158
155	Use of voriconazole in a patient with aspergilloma caused by an itraconazole-resistant strain of Aspergillus fumigatus. Journal of Medical Microbiology, 2006, 55, 1457-1459.	0.7	22
156	SUCCESSFUL TREATMENT OF BLACK-GRAIN MYCETOMA WITH VORICONAZOLE. American Journal of Tropical Medicine and Hygiene, 2006, 75, 1106-1107.	0.6	45
157	Successful treatment of black-grain mycetoma with voriconazole. American Journal of Tropical Medicine and Hygiene, 2006, 75, 1106-7.	0.6	11
158	Antifungal Combinations. , 2005, 118, 143-152.		37
159	In Vitro Evaluation of Double and Triple Combinations of Antifungal Drugs against Aspergillus fumigatus and Aspergillus terreus. Antimicrobial Agents and Chemotherapy, 2004, 48, 970-978.	1.4	96
160	Susceptibility testing of sequential isolates of Aspergillus fumigatus recovered from treated patients. Journal of Medical Microbiology, 2004, 53, 129-134.	0.7	39
161	Invasive Infections Due to Apophysomyces elegans. Mayo Clinic Proceedings, 2003, 78, 252-253.	1.4	6
162	In Vitro Interaction of Flucytosine with Conventional and New Antifungals against Cryptococcus neoformans Clinical Isolates. Antimicrobial Agents and Chemotherapy, 2003, 47, 3361-3364.	1.4	42

#	Article	IF	CITATIONS
163	Activity of Posaconazole in Treatment of Experimental Disseminated Zygomycosis. Antimicrobial Agents and Chemotherapy, 2003, 47, 3647-3650.	1.4	156
164	In vitro susceptibilities of zygomycetes to conventional and new antifungals. Journal of Antimicrobial Chemotherapy, 2003, 51, 45-52.	1.3	299
165	In Vitro Synergistic Interaction between Amphotericin B and Pentamidine against Scedosporium prolificans. Antimicrobial Agents and Chemotherapy, 2002, 46, 3323-3326.	1.4	41
166	In Vitro Susceptibilities of Zygomycetes to Combinations of Antimicrobial Agents. Antimicrobial Agents and Chemotherapy, 2002, 46, 2708-2711.	1.4	78
167	Efficacy of Antifungal Therapy in a Nonneutropenic Murine Model of Zygomycosis. Antimicrobial Agents and Chemotherapy, 2002, 46, 1953-1959.	1.4	50
168	In vitro susceptibilities of Zygomycota to polyenes. Journal of Antimicrobial Chemotherapy, 2002, 49, 741-744.	1.3	17
169	Effect of Medium Composition on Static and Cidal Activity of Amphotericin B, Itraconazole, Voriconazole, Posaconazole and Terbinafine AgainstAspergillus fumigatus:A Multicenter Study. Journal of Chemotherapy, 2002, 14, 246-252.	0.7	9
170	Evaluation of different commercial ELISA methods for the serodiagnosis of systemic candidosis. Mycoses, 2002, 45, 455-460.	1.8	26
171	Sterol composition of itraconazole-resistant and itraconazole-susceptible isolates of Aspergillus fumigatus. Canadian Journal of Microbiology, 2001, 47, 706-710.	0.8	8
172	Acquired itraconazole resistance in Aspergillus fumigatus. Journal of Antimicrobial Chemotherapy, 2001, 47, 333-340.	1.3	135
173	Sterol composition of itraconazole-resistant and itraconazole-susceptible isolates of <i>Aspergillus fumigatus</i> . Canadian Journal of Microbiology, 2001, 47, 706-710.	0.8	1
174	Amphotericin B resistance of Aspergillus terreus in a murine model of disseminated aspergillosis. Journal of Medical Microbiology, 2000, 49, 601-606.	0.7	57
175	In-vivo itraconazole resistance of Aspergillus fumigatus in systemic murine aspergillosis. Journal of Medical Microbiology, 1999, 48, 1087-1093.	0.7	50
176	Early Microascus cinereus Endocarditis of a Prosthetic Valve Implanted after Staphylococcus aureus Endocarditis of the Native Valve. Clinical Infectious Diseases, 1999, 29, 691-692.	2.9	19
177	In-vitro susceptibility of Aspergillus spp. isolates to amphotericin B and itraconazole. Journal of Antimicrobial Chemotherapy, 1999, 44, 553-555.	1.3	74
178	Use of spectrophotometric reading for in vitro antifungal susceptibility testing ofAspergillusspp Canadian Journal of Microbiology, 1999, 45, 871-874.	0.8	14
179	Use of spectrophotometric reading for in vitro antifungal susceptibility testing of <i>Aspergillus</i> spp Canadian Journal of Microbiology, 1999, 45, 871-874.	0.8	1
180	Detection of Pneumocystis carinii DNA by PCR amplification in various rat organs in experimental pneumocystosis. Journal of Medical Microbiology, 1997, 46, 665-668.	0.7	10

# Article	IF	CITATIONS
 Inhibitory Effect of Penciclovir-Triphosphate on Duck Hepatitis B Virus Reverse Transcript Antiviral Chemistry and Chemotherapy, 1997, 8, 38-46. 	tion. 0.3	35
 Fluconazole susceptibility of <i>Candida</i> isolates from oropharyngeal candidosis. My 40, 279-282. 	vcoses, 1997, 1.8	6
Evaluation of the E test for fluconazole susceptibility testing ofCandida albicans isolates oropharyngeal candidiasis. European Journal of Clinical Microbiology and Infectious Dise 16, 228-232.		20
2',3'-dideoxy-beta-L-5-fluorocytidine inhibits duck hepatitis B virus reverse transcription a suppresses viral DNA synthesis in hepatocytes, both in vitro and in vivo. Antimicrobial Ag Chemotherapy, 1996, 40, 448-453.	and gents and 1.4	57
185 Animal Models for Evaluation of Antifungal Efficacy Against Filamentous Fungi. , 0, , 115	i-135.	1