Gonzalo G Fuentes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/374422/publications.pdf

Version: 2024-02-01

430874 454955 51 959 18 30 citations h-index g-index papers 51 51 51 1133 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bactericidal silver-doped DLC coatings obtained by pulsed filtered cathodic arc co-deposition. Surface and Coatings Technology, 2021, 411, 126977.	4.8	21
2	Microstructure and indentation hardness study of CAE-PVD (Cr,Ti,Al)N solid solution coatings deposited using a combinatorial multitarget approach. Surface and Coatings Technology, 2021, 420, 127326.	4.8	2
3	Investigation on MWCNT-epoxy films at high CPVC for conductive electrodes coating. SN Applied Sciences, 2019, 1, 1.	2.9	O
4	Comparative study of CrAlSiN monolayer and CrN/AlSiN superlattice multilayer coatings: Behavior at high temperature in steam atmosphere. Journal of Alloys and Compounds, 2019, 778, 652-661.	5.5	15
5	CrAlON CAE-PVD coatings for oxidation and wear protection of TZM alloys in FAST sintering applications. Materials Chemistry and Physics, 2018, 208, 189-197.	4.0	10
6	Antibacterial Functionalization of PVD Coatings on Ceramics. Coatings, 2018, 8, 197.	2.6	20
7	Chemical and mechanical stability of air annealed cathodic arc evaporated CrAlON coatings. Surface and Coatings Technology, 2018, 351, 153-161.	4.8	11
8	SURFACE PREPARATION METHODOLOGY FOR NANOINDENTATION OF HIGH ROUGHNESS COATINGS. Dyna (Spain), 2018, 93, 529-533.	0.2	0
9	Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400°C. Materials Chemistry and Physics, 2017, 190, 194-201.	4.0	10
10	Electrode surface treatments in sludge electro-osmosis dewatering. Materials and Manufacturing Processes, 2017, 32, 1265-1273.	4.7	23
11	Antibacterial response of titanium oxide coatings doped by nitrogen plasma immersion ion implantation. Surface and Coatings Technology, 2017, 314, 67-71.	4.8	9
12	Simultaneous ageing and plasma nitriding of grade 300 maraging steel: How working pressure determines the effective nitrogen diffusion into narrow cavities. Surface and Coatings Technology, 2017, 317, 64-74.	4.8	8
13	Sliding friction and wear behaviour of Titanium-Zirconium-Molybdenum (TZM) alloy against Al2O3 and Si3N4 balls under several environments and temperatures. Tribology International, 2017, 110, 348-357.	5.9	24
14	Towards low-friction and wear-resistant plasma sintering dies via plasma surface co-alloying CM247 nickel alloy with V/Ag and N. MATEC Web of Conferences, 2015, 21, 10005.	0.2	0
15	Surface Engineering and Micro-manufacturing. , 2015, , 459-486.		2
16	Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: Stress-assisted diffusion of Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 620, 375-382.	5.6	34
17	Influence of temperature in arc-activated plasma nitriding of maraging steel in solution annealed and aged conditions. Surface and Coatings Technology, 2014, 258, 754-762.	4.8	28
18	Vapour deposition technologies for the fabrication of hot-forming tools: a review. Manufacturing Review, 2014, 1, 20.	1.5	8

#	Article	IF	CITATIONS
19	TRATAMIENTOS TERMOQUIMICOS PARA ACEROS MARAGING NITRURACION POR PLASMA ASISTIDO POR ARCO CATODICO. Dyna (Spain), 2014, 89, 172-175.	0.2	0
20	New technique for determining the critical loads of a thin coating on a tool–steel substrate by considering the initiation of cracks in the coating. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226, 1205-1212.	2.4	4
21	Friction, nanowear and corrosion properties of electroplated nickel surfaces after dual implantation of Cr+ and N2+ ions. Influence of the implantation energy of the N2+ ions. Surface and Coatings Technology, 2012, 210, 46-53.	4.8	3
22	Nano-wear, nano-hardness and corrosion-resistance of electroplated nickel surfaces after co-implantation of Cr+ and N2+ ions. Surface and Coatings Technology, 2011, 205, 4447-4452.	4.8	5
23	Effects of He+ ion implantation on surface properties of UV-cured Bis-GMA/TEGDMA bio-compatible resins. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 111-116.	1.4	5
24	Interface effects in the electronic structure of TiO2 deposited on MgO, Al2O3 and SiO2 substrates. Surface Science, 2011, 605, 539-544.	1.9	10
25	Temperature-dependent contact phenomena of PVD- and CVD-deposited DLC films sliding on the thin aluminium foil. International Journal of Advanced Manufacturing Technology, 2010, 47, 931-936.	3.0	6
26	Tribocorrosion behaviour of duplex surface treated AISI 304 stainless steel. Surface and Coatings Technology, 2010, 204, 1623-1630.	4.8	36
27	Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2010, 35, 11489-11498.	7.1	66
28	High temperature tribological characterisation of TiAlSiN coatings produced by cathodic arc evaporation. Surface and Coatings Technology, 2010, 205, 1368-1373.	4.8	59
29	Surface Engineering and Micro-Manufacturing. , 2010, , 221-240.		0
30	Gradient CrCN cathodic arc PVD coatings. Thin Solid Films, 2009, 517, 5894-5899.	1.8	21
31	Gradient CrCN cathodic arc PVD coatings. Surface and Coatings Technology, 2008, 203, 670-674.	4.8	22
32	Quasi-One-Dimensional K-O Chain in PTCDA Thin Films: Evidence from First-Principles Calculations. Physical Review Letters, 2007, 98, 046401.	7.8	18
33	Improvement of surface mechanical properties of polymers by helium ion implantation. Surface and Coatings Technology, 2007, 201, 8146-8149.	4.8	24
34	Spectroscopic investigations of Cr, CrN and TiCr anti-multipactor coatings grown by cathodic-arc reactive evaporation. Applied Surface Science, 2007, 253, 7627-7631.	6.1	11
35	Investigation on the sliding of aluminium thin foils against PVD-coated carbide forming-tools during micro-forming. Journal of Materials Processing Technology, 2006, 177, 644-648.	6.3	18
36	Triode plasma nitriding and PVD coating: A successful pre-treatment combination to improve the wear resistance of DLC coatings on Ti6Al4V alloy. Surface and Coatings Technology, 2006, 201, 4335-4340.	4.8	66

3

#	Article	IF	CITATIONS
37	Electronic structure and work function of potassium-doped PTCDA thin films. Applied Physics A: Materials Science and Processing, 2006, 84, 329-333.	2.3	14
38	Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr–N coatings on AISI M2 steel and WC–Co substrates. Thin Solid Films, 2005, 491, 177-183.	1.8	7
39	Tribological improvements of ion implanted technological alloys: Plasma immersion vs. conventional ion implantation. Surface and Coatings Technology, 2005, 200, 573-578.	4.8	15
40	Effect of coating thickness and deposition methods on the stripping rate of Cr–N coatings. Surface and Coatings Technology, 2005, 200, 1842-1848.	4.8	8
41	Plasma nitriding of Ti6Al4V alloy and AISI M2 steel substrates using D.C. glow discharges under a triode configuration. Surface and Coatings Technology, 2005, 200, 1954-1961.	4.8	41
42	Recent advances in the chromium nitride PVD process for forming and machining surface protection. Journal of Materials Processing Technology, 2005, 167, 415-421.	6.3	55
43	Microstructural and tribological investigations of CrN coated, wet-stripped and recoated functional substrates used for cutting and forming tools. Thin Solid Films, 2004, 469-470, 466-471.	1.8	15
44	Characterization of hard DC-sputtered Si-based TiN coatings: the effect of composition and ion bombardment. Surface and Coatings Technology, 2004, 188-189, 351-357.	4.8	36
45	Temperature-dependent tribological properties of low-energy N-implanted V5Ti alloys. Surface and Coatings Technology, 2004, 188-189, 459-465.	4.8	5
46	Tribological metal-carbon coatings deposited by PVD magnetron sputtering. Applied Surface Science, 2004, 235, 53-59.	6.1	11
47	Efficient production of B-substituted single-wall carbon nanotubes. Chemical Physics Letters, 2003, 378, 516-520.	2.6	95
48	Elastic properties of hard TiCxNy films grown by dual ion beam sputtering. Surface and Coatings Technology, 2002, 151-152, 365-369.	4.8	10
49	Effects of the low energy-ion beam assistance in the properties of TiCxNy thin films. Surface and Coatings Technology, 2002, 151-152, 189-193.	4.8	0
50	Mechanical and tribological properties of TiCxN1â^'x wear resistant coatings. International Journal of Refractory Metals and Hard Materials, 2001, 19, 507-513.	3.8	35
51	Correlation between bonding structure and mechanical properties of amorphous carbon nitride thin films. Surface and Coatings Technology, 2000, 125, 284-288.	4.8	13