List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744214/publications.pdf Version: 2024-02-01

		34105	48315
337	9,411	52	88
papers	citations	h-index	g-index
338	338	338	7516
all docs	docs citations	times ranked	citing authors

HONGWEI WU

#	Article	IF	CITATIONS
1	Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and Its Comparisons with Other Hydrolysis Methods. Energy & Fuels, 2008, 22, 46-60.	5.1	407
2	Environmental-benign utilisation of fly ash as low-cost adsorbents. Journal of Hazardous Materials, 2006, 136, 482-501.	12.4	406
3	Fast Pyrolysis of Oil Mallee Woody Biomass:  Effect of Temperature on the Yield and Quality of Pyrolysis Products. Industrial & Engineering Chemistry Research, 2008, 47, 1846-1854.	3.7	323
4	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel, 2002, 81, 143-149.	6.4	268
5	Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions. Energy & Fuels, 2009, 23, 4174-4181.	5.1	262
6	The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science, 2002, 28, 405-433.	31.2	252
7	Removal of ammonium from greywater using natural zeolite. Desalination, 2011, 277, 15-23.	8.2	248
8	Effect of Alkali and Alkaline Earth Metallic Species on Biochar Reactivity and Syngas Compositions during Steam Gasification ^{â€} . Energy & Fuels, 2010, 24, 173-181.	5.1	203
9	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivityâ~†. Fuel, 2003, 82, 587-593.	6.4	200
10	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature. Fuel, 2002, 81, 1033-1039.	6.4	187
11	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel, 2002, 81, 151-158.	6.4	185
12	A review on biomass pyrolysis models: Kinetic, network and mechanistic models. Biomass and Bioenergy, 2019, 123, 104-122.	5.7	183
13	Catalytic reforming of tar during gasification. Part I. Steam reforming of biomass tar using ilmenite as a catalyst. Fuel, 2011, 90, 1847-1854.	6.4	162
14	Significant Differences in the Hydrolysis Behavior of Amorphous and Crystalline Portions within Microcrystalline Cellulose in Hot-Compressed Water. Industrial & Engineering Chemistry Research, 2010, 49, 3902-3909.	3.7	136
15	Removal and Recycling of Inherent Inorganic Nutrient Species in Mallee Biomass and Derived Biochars by Water Leaching. Industrial & Engineering Chemistry Research, 2011, 50, 12143-12151.	3.7	130
16	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. Fuel, 2004, 83, 23-30.	6.4	124
17	Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. Bioresource Technology, 2012, 118, 177-186.	9.6	110
18	Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations. Energy & Fuels, 2007, 21, 3437-3445.	5.1	108

#	Article	IF	CITATIONS
19	Evolution of Char Structure during the Steam Gasification of Biochars Produced from the Pyrolysis of Various Mallee Biomass Components. Industrial & Engineering Chemistry Research, 2009, 48, 10431-10438.	3.7	106
20	Unburned carbon as a low-cost adsorbent for treatment of methylene blue-containing wastewater. Journal of Colloid and Interface Science, 2005, 292, 336-343.	9.4	105
21	Leaching Characteristics of Organic and Inorganic Matter from Biomass by Water: Differences between Batch and Semi-continuous Operations. Industrial & Engineering Chemistry Research, 2013, 52, 4280-4289.	3.7	102
22	Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass. Fuel, 2011, 90, 2530-2537.	6.4	92
23	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. Fuel, 2004, 83, 1273-1279.	6.4	90
24	Biochar as a Fuel: 2. Significant Differences in Fuel Quality and Ash Properties of Biochars from Various Biomass Components of Mallee Trees. Energy & amp; Fuels, 2010, 24, 1972-1979.	5.1	89
25	Production of Mallee Biomass in Western Australia: Energy Balance Analysis. Energy & Fuels, 2008, 22, 190-198.	5.1	87
26	An Experimental Study on the Effect of System Pressure on Char Structure of an Australian Bituminous Coal. Energy & Fuels, 2000, 14, 282-290.	5.1	85
27	A Functionâ€ S eparated Design of Electrode for Realizing Highâ€Performance Hybrid Zinc Battery. Advanced Energy Materials, 2020, 10, 2002992.	19.5	84
28	The potential application of natural zeolite for greywater treatment. Desalination, 2008, 218, 271-280.	8.2	82
29	Biochar as a Fuel: 4. Emission Behavior and Characteristics of PM ₁ and PM ₁₀ from the Combustion of Pulverized Biochar in a Drop-Tube Furnace. Energy & Fuels, 2011, 25, 2702-2710.	5.1	81
30	Understanding the Primary Liquid Products of Cellulose Hydrolysis in Hot-Compressed Water at Various Reaction Temperatures. Energy & Fuels, 2010, 24, 1963-1971.	5.1	79
31	Effect of ball milling on the hydrolysis of microcrystalline cellulose in hotâ€compressed water. AICHE Journal, 2011, 57, 793-800.	3.6	79
32	Effects of volatile–char interactions on the reactivity of chars from NaCl-loaded Loy Yang brown coal. Fuel, 2005, 84, 1221-1228.	6.4	77
33	Mallee Biomass as a Key Bioenergy Source in Western Australia: Importance of Biomass Supply Chain. Energy & Fuels, 2009, 23, 3290-3299.	5.1	75
34	Ash Liberation from Included Minerals during Combustion of Pulverized Coal:Â The Relationship with Char Structure and Burnout. Energy & Fuels, 1999, 13, 1197-1202.	5.1	72
35	Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel, 2013, 103, 672-682.	6.4	71
36	Characteristics and Precipitation of Glucose Oligomers in the Fresh Liquid Products Obtained from the Hydrolysis of Cellulose in Hot-Compressed Water. Industrial & Engineering Chemistry Research, 2009, 48, 10682-10690.	3.7	69

#	Article	IF	CITATIONS
37	Combustion of Volatiles Produced <i>in Situ</i> from the Fast Pyrolysis of Woody Biomass: Direct Evidence on Its Substantial Contribution to Submicrometer Particle (PM ₁) Emission. Energy & Fuels, 2011, 25, 4172-4181.	5.1	68
38	Effect of Sampling Temperature on the Properties of Inorganic Particulate Matter Collected from Biomass Combustion in a Drop-Tube Furnace. Energy & Fuels, 2010, 24, 4571-4580.	5.1	67
39	Release of Chlorine during Mallee Bark Pyrolysis. Energy & Fuels, 2013, 27, 310-317.	5.1	66
40	Bioslurry as a Fuel. 1. Viability of a Bioslurry-Based Bioenergy Supply Chain for Mallee Biomass in Western Australia. Energy & Fuels, 2010, 24, 5652-5659.	5.1	63
41	Significant contribution of organically-bound Mg, Ca, and Fe to inorganic PM10 emission during the combustion of pulverized Victorian brown coal. Fuel, 2014, 117, 825-832.	6.4	62
42	Characterization of Pyrolytic Sugars in Bio-Oil Produced from Biomass Fast Pyrolysis. Energy & Fuels, 2016, 30, 4145-4149.	5.1	61
43	A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. Proceedings of the Combustion Institute, 2011, 33, 1755-1762.	3.9	60
44	Emission of inorganic PM10 from included mineral matter during the combustion of pulverized coals of various ranks. Fuel, 2015, 140, 526-530.	6.4	60
45	The Effect of Pressure on Ash Formation during Pulverized Coal Combustion. Energy & Fuels, 2000, 14, 745-750.	5.1	59
46	Bioslurry as a Fuel. 3. Fuel and Rheological Properties of Bioslurry Prepared from the Bio-oil and Biochar of Mallee Biomass Fast Pyrolysis. Energy & Fuels, 2010, 24, 5669-5676.	5.1	59
47	Formation and Characteristics of Reaction Intermediates from the Fast Pyrolysis of NaCl- and MgCl ₂ -Loaded Celluloses. Energy & Fuels, 2014, 28, 245-253.	5.1	59
48	A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells. Journal of Materials Chemistry, 2011, 21, 6668.	6.7	58
49	Formation of Anhydro-sugars in the Primary Volatiles and Solid Residues from Cellulose Fast Pyrolysis in a Wire-Mesh Reactor. Energy & Fuels, 2014, 28, 5204-5211.	5.1	57
50	Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy & Fuels, 2011, 25, 406-414.	5.1	56
51	Contribution of dehydration and depolymerization reactions during the fast pyrolysis of various salt-loaded celluloses at low temperatures. Fuel, 2014, 136, 62-68.	6.4	56
52	Leaching characteristics of inherent inorganic nutrients in biochars from the slow and fast pyrolysis of mallee biomass. Fuel, 2014, 128, 433-441.	6.4	56
53	Modeling the fragmentation of non-uniform porous char particles during pulverized coal combustion. Fuel, 2000, 79, 627-633.	6.4	54
54	Characterization of Water-Soluble Intermediates from Slow Pyrolysis of Cellulose at Low Temperatures. Energy & Fuels, 2012, 26, 7331-7339.	5.1	53

#	Article	IF	CITATIONS
55	Acid-catalysed cellulose pyrolysis at low temperatures. Fuel, 2017, 193, 460-466.	6.4	53
56	Effect of Inherent Moisture in Collie Coal during Pyrolysis Due to in-Situ Steam Gasification. Energy & Fuels, 2007, 21, 2883-2891.	5.1	52
57	An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Fuel, 2013, 108, 409-416.	6.4	52
58	Bioslurry as a Fuel. 2. Life-Cycle Energy and Carbon Footprints of Bioslurry Fuels from Mallee Biomass in Western Australia. Energy & Fuels, 2010, 24, 5660-5668.	5.1	51
59	High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnology and Bioprocess Engineering, 2014, 19, 478-492.	2.6	50
60	Synthesis and characterization of doped La9ASi6O26.5 (AÂ=ÂCa, Sr, Ba) oxyapatite electrolyte by a water-based gel-casting route. International Journal of Hydrogen Energy, 2011, 36, 6862-6874.	7.1	49
61	Differences in Water-Soluble Intermediates from Slow Pyrolysis of Amorphous and Crystalline Cellulose. Energy & Fuels, 2013, 27, 1371-1380.	5.1	49
62	Effect of MgCl2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 ŰC. Proceedings of the Combustion Institute, 2015, 35, 2381-2388.	3.9	49
63	Kinetics and Mechanism of Glucose Decomposition in Hot-Compressed Water: Effect of Initial Glucose Concentration. Industrial & Engineering Chemistry Research, 2011, 50, 10500-10508.	3.7	48
64	The effect of combustion conditions on mineral matter transformation and ash deposition in a utility boiler fired with a sub-bituminous coal. Proceedings of the Combustion Institute, 2005, 30, 2981-2989.	3.9	45
65	Some Recent Advances in Liquefied Natural Gas (LNG) Production, Spill, Dispersion, and Safety. Energy & Fuels, 2014, 28, 3556-3586.	5.1	44
66	Emission of Inorganic PM ₁₀ from the Combustion of Torrefied Biomass under Pulverized-Fuel Conditions. Energy & Fuels, 2015, 29, 800-807.	5.1	44
67	Hydrolysis and glycosidation of sugars during the esterification of fast pyrolysis bio-oil. Fuel, 2012, 95, 146-151.	6.4	43
68	Determination of chlorine in solid fuels using an improved Eschka method. Fuel, 2014, 129, 314-317.	6.4	42
69	Effects of Pretreatment in Steam on the Pyrolysis Behavior of Loy Yang Brown Coal. Energy & Fuels, 2006, 20, 281-286.	5.1	41
70	Life Cycle Energy and Carbon Footprints of Microalgal Biodiesel Production in Western Australia: A Comparison of Byproducts Utilization Strategies. ACS Sustainable Chemistry and Engineering, 2013, 1, 1371-1380.	6.7	41
71	Formation of NO precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel, 2005, 84, 2102-2108.	6.4	40
72	Role of unburnt carbon in adsorption of dyes on fly ash. Journal of Chemical Technology and Biotechnology, 2005, 80, 1204-1209.	3.2	39

#	Article	IF	CITATIONS
73	Ash Cenosphere from Solid Fuels Combustion. Part 1: An Investigation into Its Formation Mechanism Using Pyrite as a Model Fuel. Energy & Fuels, 2012, 26, 130-137.	5.1	37
74	Roles of Inherent Fine Included Mineral Particles in the Emission of PM ₁₀ during Pulverized Coal Combustion. Energy & Fuels, 2012, 26, 6783-6791.	5.1	37
75	Bioslurry as a Fuel. 5. Fuel Properties Evolution and Aging during Bioslurry Storage. Energy & Fuels, 2013, 27, 7560-7568.	5.1	37
76	Aerodynamic Properties of Biochar Particles: Effect of Grinding and Implications. Environmental Science and Technology Letters, 2014, 1, 60-64.	8.7	37
77	Thermal decomposition of pyrolytic lignin under inert conditions at low temperatures. Fuel, 2017, 200, 70-75.	6.4	37
78	Effect of Pressure on Char Formation during Pyrolysis of Pulverized Coal. Energy & Fuels, 2004, 18, 1346-1353.	5.1	36
79	Cellobiose Decomposition in Hot-Compressed Water: Importance of Isomerization Reactions. Industrial & Engineering Chemistry Research, 2013, 52, 17006-17014.	3.7	36
80	Investigation on Ash Slagging Characteristics During Combustion of Biomass Pellets and Effect of Additives. Energy & Fuels, 2018, 32, 4442-4452.	5.1	35
81	Bioslurry as a Fuel. 4. Preparation of Bioslurry Fuels from Biochar and the Bio-oil-Rich Fractions after Bio-oil/Biodiesel Extraction. Energy & amp; Fuels, 2011, 25, 1759-1771.	5.1	33
82	Effect of major impurities in crude glycerol on solubility and properties of glycerol/methanol/bio-oil blends. Fuel, 2015, 159, 118-127.	6.4	32
83	Grinding pyrolysis of Mallee wood: Effects of pyrolysis conditions on the yields of bio-oil and biochar. Fuel Processing Technology, 2017, 167, 215-220.	7.2	32
84	Application of Concrete and Demolition Waste as CO ₂ Sorbent in Chemical Looping Gasification of Biomass. Energy & Fuels, 2012, 26, 2046-2057.	5.1	31
85	Solvent effect of gamma-valerolactone (GVL) on cellulose and biomass hydrolysis in hot-compressed GVL/water mixtures. Fuel, 2018, 232, 317-322.	6.4	31
86	Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal. Fuel, 2005, 84, 1586-1586.	6.4	30
87	PM10 formation during the combustion of N2-char and CO2-char of Chinese coals. Proceedings of the Combustion Institute, 2013, 34, 2383-2392.	3.9	30
88	Phase Behavior and Fuel Properties of Bio-Oil/Glycerol/Methanol Blends. Energy & Fuels, 2014, 28, 4650-4656.	5.1	30
89	Stability of emulsion fuels prepared from fast pyrolysis bio-oil and glycerol. Fuel, 2017, 206, 230-238.	6.4	30
90	A Method for the Quantification of Alkali and Alkaline Earth Metallic Species in Bioslurry Fuels. Energy & Fuels, 2013, 27, 6823-6830.	5.1	29

#	Article	IF	CITATIONS
91	Release of chlorine from the slow pyrolysis of NaCl-loaded cellulose at low temperatures. Proceedings of the Combustion Institute, 2015, 35, 2891-2896.	3.9	29
92	Important role of volatile–char interactions in enhancing PM 1 emission during the combustion of volatiles from biosolid. Combustion and Flame, 2017, 182, 90-101.	5.2	29
93	Characterization of Residual Carbon in Fly Ashes from Power Plants Firing Biomass. Energy & Fuels, 2013, 27, 898-907.	5.1	28
94	Fuel properties and ageing of bioslurry prepared from glycerol/methanol/bio-oil blend and biochar. Fuel, 2016, 176, 72-77.	6.4	28
95	Volatile–char interactions: Roles of in situ volatiles with distinctly-different chemistry in determining char structure and reactivity. Proceedings of the Combustion Institute, 2019, 37, 2749-2755.	3.9	28
96	Mechanistic Investigation into Bed Agglomeration during Biomass Fast Pyrolysis in a Fluidized-Bed Reactor. Energy & Fuels, 2012, 26, 6979-6987.	5.1	27
97	Evolution of Primary Liquid Products and Evidence of in Situ Structural Changes in Cellulose with Conversion during Hydrolysis in Hot-Compressed Water. Industrial & Engineering Chemistry Research, 2010, 49, 3919-3925.	3.7	26
98	Further Investigation into the Formation Mechanism of Ash Cenospheres from an Australian Coal-Fired Power Station. Energy & Fuels, 2013, 27, 811-815.	5.1	26
99	Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes. Bioresource Technology, 2012, 107, 41-45.	9.6	25
100	A Method for the Quantification of Chlorine in Low-Rank Solid Fuels. Energy & Fuels, 2013, 27, 6992-6999.	5.1	25
101	Differences in soot produced from rapid pyrolysis of xylan, cellulose and lignin under pulverized-fuel conditions. Fuel, 2020, 265, 116991.	6.4	25
102	Effects of Dewatering on the Pyrolysis and Gasification Reactivity of Victorian Brown Coalâ€. Energy & Fuels, 2007, 21, 399-404.	5.1	24
103	Effect of cellulose–lignin interactions on char structural changes during fast pyrolysis at 100–350â€ ⁻ °C. Proceedings of the Combustion Institute, 2021, 38, 3977-3986.	3.9	24
104	High-Phosphorus Fuel Combustion: Effect of Oxyfuel Conditions on PM ₁₀ Emission from Homo- and Heterogeneous Phases. Energy & Fuels, 2017, 31, 2317-2323.	5.1	23
105	Inorganic PM10 emission from the combustion of individual mallee components and whole-tree biomass. Proceedings of the Combustion Institute, 2017, 36, 3313-3319.	3.9	23
106	Pyrolytic lignin from fast pyrolysis bio-oil via cold-water precipitation: Optimal separation conditions and properties. Fuel, 2019, 242, 580-586.	6.4	23
107	Insights into the Primary Decomposition Mechanism of Cellobiose under Hydrothermal Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 14607-14616.	3.7	22
108	Bioslurry as a Fuel. 7: Spray Characteristics of Bio-Oil and Bioslurry via Impact and Twin-Fluid Atomizers. Energy & Fuels, 2015, 29, 8058-8065.	5.1	22

#	Article	IF	CITATIONS
109	Direct emulsification of crude glycerol and bio-oil without addition of surfactant via ultrasound and mechanical agitation. Fuel, 2018, 227, 183-189.	6.4	22
110	Importance of lignin removal in enhancing biomass hydrolysis in hot-compressed water. Bioresource Technology, 2019, 288, 121522.	9.6	22
111	Pyrolysis of Collie Coal Briquettes To Produce Char as a Metallurgical Reductantâ€. Energy & Fuels, 2007, 21, 419-425.	5.1	21
112	Near-Complete Recovery of Sugar Monomers from Cellulose and Lignocellulosic Biomass via a Two-Step Process Combining Mechanochemical Hydrolysis and Dilute Acid Hydrolysis. Energy & Fuels, 2016, 30, 1571-1578.	5.1	21
113	Mathematical modelling of Collie coal pyrolysis considering the effect of steam produced in situ from coal inherent moisture and pyrolytic water. Proceedings of the Combustion Institute, 2009, 32, 2675-2683.	3.9	19
114	Bioslurry as a Fuel. 6. Leaching Characteristics of Alkali and Alkaline Earth Metallic Species from Biochar by Bio-oil Model Compounds. Energy & Fuels, 2015, 29, 2535-2541.	5.1	19
115	Trace Elements Release and Particulate Matter Emission during the Combustion of Char and Volatiles from <i>In Situ</i> Biosolid Fast Pyrolysis. Energy & Fuels, 2016, 30, 5766-5771.	5.1	19
116	Modeling of Liquefied Natural Gas Release and Dispersion: Incorporating a Direct Computational Fluid Dynamics Simulation Method for LNG Spill and Pool Formation. Industrial & Engineering Chemistry Research, 2016, 55, 1778-1787.	3.7	19
117	Synergy on particulate matter emission during the combustion of bio-oil/biochar slurry (bioslurry). Fuel, 2018, 214, 546-553.	6.4	19
118	Adsorption Characteristics of Bio-oil on Biochar in Bioslurry Fuels. Energy & Fuels, 2017, 31, 9619-9626.	5.1	18
119	Bed Agglomeration during Bio-oil Fast Pyrolysis in a Fluidized-Bed Reactor. Energy & Fuels, 2018, 32, 3608-3613.	5.1	18
120	Tuning glucose decomposition in hot-compressed gamma-valerolactone/water mixtures: From isomerization to dehydration reactions. Fuel, 2019, 238, 225-231.	6.4	18
121	A New Method for Direct Determination of Char Yield during Solid Fuel Pyrolysis in Drop-Tube Furnace at High Temperature and Its Comparison with Ash Tracer Method. Energy & Fuels, 2019, 33, 1509-1517.	5.1	18
122	Steam distillation of mallee leaf: Extraction of 1,8-cineole and changes in the fuel properties of spent biomass. Fuel, 2014, 133, 341-349.	6.4	17
123	Ternary System of Pyrolytic Lignin, Mixed Solvent, and Water: Phase Diagram and Implications. Energy & Fuels, 2018, 32, 465-474.	5.1	17
124	Structural changes of chars produced from fast pyrolysis of lignin at 100–300â€ ⁻ °C. Fuel, 2019, 255, 115754.	6.4	17
125	Celebrating the Inaugural 2021 Pioneers in Energy Research. Energy & Fuels, 2021, 35, 16935-16935.	5.1	17
126	Emission of Inorganic PM ₁₀ during the Combustion of Spent Biomass from Mallee Leaf Steam Distillation. Energy & Fuels, 2015, 29, 5171-5175.	5.1	16

#	Article	IF	CITATIONS
127	Rapid Pyrolysis of Pulverized Biomass at a High Temperature: The Effect of Particle Size on Char Yield, Retentions of Alkali and Alkaline Earth Metallic Species, and Char Particle Shape. Energy & Fuels, 2020, 34, 7140-7148.	5.1	16
128	Heterogeneity of Ash Deposits Formed in a Utility Boiler during PF Combustionâ€. Energy & Fuels, 2007, 21, 441-450.	5.1	15
129	Evaluating a sustainability index for nutrients in a short rotation energy cropping system. GCB Bioenergy, 2013, 5, 315-326.	5.6	15
130	Solar-Thermal Pyrolysis of Mallee Wood at High Temperatures. Energy & Fuels, 2018, 32, 4350-4356.	5.1	15
131	Effect of water vapour on particulate matter emission during oxyfuel combustion of char and in situ volatiles generated from rapid pyrolysis of chromated-copper-arsenate-treated wood. Proceedings of the Combustion Institute, 2019, 37, 4319-4327.	3.9	15
132	Ash Cenosphere from Solid Fuels Combustion. Part 2: Significant Role of Ash Cenosphere Fragmentation in Ash and Particulate Matter Formation. Energy & Fuels, 2013, 27, 822-829.	5.1	14
133	Polymerization of glucose during acid-catalyzed pyrolysis at low temperatures. Fuel, 2018, 230, 83-88.	6.4	14
134	Effect of particle size on particulate matter emissions during biosolid char combustion under air and oxyfuel conditions. Fuel, 2018, 232, 251-256.	6.4	14
135	Transformation and release of phosphorus during rice bran pyrolysis: Effect of reactor configurations under various conditions. Fuel, 2019, 255, 115755.	6.4	14
136	Hydrothermal Reactions of Biomass-Derived Platform Molecules: Distinct Effect of Aprotic and Protic Solvents on Primary Decomposition of Glucose and Fructose in Hot-Compressed Solvent/Water Mixtures. Industrial & Engineering Chemistry Research, 2020, 59, 7336-7345.	3.7	14
137	Evolution of Water-Soluble and Water-Insoluble Portions in the Solid Products from Fast Pyrolysis of Amorphous Cellulose. Industrial & Engineering Chemistry Research, 2013, 52, 12785-12793.	3.7	13
138	Pyrolysis of Spent Biomass from Mallee Leaf Steam Distillation: Biochar Properties and Recycling of Inherent Inorganic Nutrients. Energy & Fuels, 2014, 28, 4642-4649.	5.1	13
139	Association of inorganic species release with sugar recovery during wood hydrothermal processing. Fuel, 2016, 166, 581-584.	6.4	13
140	Ignition temperatures of various bio-oil based fuel blends and slurry fuels. Fuel, 2017, 207, 240-243.	6.4	13
141	Influence of biomass particle size on bed agglomeration during biomass pyrolysis in fluidised bed. Proceedings of the Combustion Institute, 2017, 36, 2199-2205.	3.9	13
142	A New Method for Quantifying Phosphorus of Various Occurrence Forms in Solid Fuels. Energy & Fuels, 2019, 33, 3311-3321.	5.1	13
143	Confronting Racism in Chemistry Journals. ACS Applied Materials & Interfaces, 2020, 12, 28925-28927.	8.0	13
144	<i>Energy & Fuels</i> Launches the Series of Virtual Special Issues on Recent Advances in Selected Energy Research Areas. Energy & Fuels, 2021, 35, 1-2.	5.1	13

#	Article	IF	CITATIONS
145	Fuel Mixtures from Crude Glycerol, the Bio-oil–Water-Soluble Fraction, and Biochar for Stationary Applications. Energy & Fuels, 2016, 30, 8419-8424.	5.1	12
146	Mass Spectrometry Analysis of Sugar and Anhydrosugar Oligomers from Biomass Thermochemical Processing. Energy & Fuels, 2016, 30, 8787-8789.	5.1	12
147	Interaction between sodium vapor and reactor wall during biomass combustion and its influence on measurement of particulate matter emission. Fuel, 2016, 165, 260-263.	6.4	12
148	Emission of particulate matter during the combustion of bio-oil and its fractions under air and oxyfuel conditions. Proceedings of the Combustion Institute, 2017, 36, 4061-4068.	3.9	12
149	Tuning Biochar Properties via Partial Gasification: Facilitating Inorganic Nutrients Recycling and Altering Organic Matter Leaching. Energy & Fuels, 2015, 29, 4407-4417.	5.1	11
150	Effect of Alkali and Alkaline Earth Metal Chlorides on Cellobiose Decomposition in Hot-Compressed Water. Industrial & Engineering Chemistry Research, 2015, 54, 5450-5459.	3.7	11
151	Separation of Bio-oil by Hydrophilic Surfactants. Energy & Fuels, 2018, 32, 3559-3565.	5.1	11
152	Effect of volatile–char interactions on PM10 emission during the combustion of biosolid chars under air and oxyfuel conditions. Combustion and Flame, 2018, 197, 290-303.	5.2	11
153	Interactions between Low- and High-Molecular-Weight Portions of Lignin during Fast Pyrolysis at Low Temperatures. Energy & Fuels, 2019, 33, 11173-11180.	5.1	11
154	Effect of Hydrodistillation on 1,8-Cineole Extraction from Mallee Leaf and the Fuel Properties of Spent Biomass. Industrial & Engineering Chemistry Research, 2011, 50, 11280-11287.	3.7	10
155	Particulate matter emission from bio-oil incomplete combustion under conditions relevant to stationary applications. Fuel, 2016, 171, 143-150.	6.4	10
156	Insights into Hydrothermal Decomposition of Cellobiose in Gamma-Valerolactone/Water Mixtures. Industrial & Engineering Chemistry Research, 2017, 56, 7957-7963.	3.7	10
157	Occurrence and characteristics of abundant fine included mineral particles in Collie coal of Western Australia. Fuel, 2018, 216, 53-60.	6.4	10
158	Biodiesel Production from Canola in Western Australia: Energy and Carbon Footprints and Land, Water, and Labour Requirements. Industrial & Engineering Chemistry Research, 2010, 49, 11785-11796.	3.7	9
159	Rapid Recovery of Fermentable Sugars for Biofuel Production from Enzymatic Hydrolysis of Microcrystalline Cellulose by Hot-Compressed Water Pretreatment. Energy & Fuels, 2013, 27, 4777-4784.	5.1	9
160	Site Variation in Life Cycle Energy and Carbon Footprints of Mallee Biomass Production in Western Australia. Energy & Fuels, 2015, 29, 3748-3752.	5.1	9
161	Effect of atmospheric and sea stability on liquefied natural gas (LNG) dispersion: Implications to Australian LNG marine transport. Fuel, 2017, 197, 8-19.	6.4	9
162	Characterization of Size-Segregated Soot from Pine Wood Pyrolysis in a Drop Tube Furnace at 1300 °C. Energy & Fuels, 2019, 33, 2293-2300.	5.1	9

#	Article	IF	CITATIONS
163	Formation of reaction intermediates and primary volatiles during acid-catalysed fast pyrolysis of cellulose in a wire-mesh reactor. Proceedings of the Combustion Institute, 2021, 38, 4301-4308.	3.9	9
164	Relationship between Crystallinity Index and Enzymatic Hydrolysis Performance of Celluloses Separated from Aquatic and Terrestrial Plant Materials. BioResources, 2014, 9, .	1.0	9
165	Differences in Bed Agglomeration Behavior during the Fast Pyrolysis of Mallee Bark, Leaf, and Wood in a Fluidized-Bed Reactor at 500 °C. Energy & Fuels, 2015, 29, 3753-3759.	5.1	8
166	Bioslurry for Stationary Applications: Particulate Matter Emission during Combustion under Air and Oxyfuel Conditions. Energy & Fuels, 2017, 31, 7241-7246.	5.1	8
167	Trace Elements in Various Individual and Mixed Biofuels: Abundance and Release in Particulate Matter during Combustion. Energy & Fuels, 2018, 32, 5978-5989.	5.1	8
168	A Novel Two-Stage Alumina Reactor System for Burning Volatiles Generated in Situ from Biosolid: Effect of Pyrolysis Temperature and Combustion Conditions on PM ₁ Emission. Energy & Fuels, 2018, 32, 9438-9447.	5.1	8
169	2009 Sinoâ^'Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2010, 24, 1-1.	5.1	7
170	2011 Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2012, 26, 1-3.	5.1	7
171	Effect of initial pH on hydrothermal decomposition of cellobiose under weakly acidic conditions. Fuel, 2015, 158, 315-321.	6.4	7
172	Combustion of Fuel Mixtures Containing Crude Glycerol (CG): Important Role of Interactions between CG and Fuel Components in Particulate Matter Emission. Industrial & Engineering Chemistry Research, 2018, 57, 4132-4138.	3.7	7
173	Formation of organic acids during cellobiose decomposition in hot-compressed water. Fuel, 2018, 218, 174-178.	6.4	7
174	Modelling of bio-oil steam gasification in a fluidized bed reactor. Fuel, 2018, 220, 575-585.	6.4	7
175	Ageing of bio-oil and its fractions in presence of surfactants. Fuel, 2019, 252, 403-407.	6.4	7
176	Mechanistic insights into the primary reactions during acid-catalysed pyrolysis of levoglucosan at 80–140°C. Fuel, 2020, 268, 117390.	6.4	7
177	Diagnosis of bed agglomeration during biomass pyrolysis in fluidized-bed at a wide range of temperatures. Fuel, 2016, 179, 103-107.	6.4	6
178	2006 Sinoâ^'Australia Symposium on Advanced Coal Utilization Technology, July 12â^'14, 2006, Wuhan China. Energy & Fuels, 2007, 21, 385-386.	5.1	5
179	4th (2013) Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2014, 28, 1-3.	5.1	5
180	Quantification of Interactions between Sand and Pyrolyzing Biomass Particles in Fluidized-Bed under Fast Pyrolysis Conditions Pertinent to Bio-Oil Production. Industrial & Engineering Chemistry Research, 2015, 54, 7990-7997.	3.7	5

#	Article	IF	CITATIONS
181	5th Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2016, 30, 1531-1533.	5.1	5
182	Differences in Leaching Characteristics of Mg and Ca from Various Biomass Components of Mallee Tree in Hot-Compressed Water. Energy & Fuels, 2016, 30, 7851-7857.	5.1	5
183	Bed Agglomeration during the Drying of Mallee Leaf in Fluidized Bed. Industrial & Engineering Chemistry Research, 2016, 55, 1796-1800.	3.7	5
184	Ash cenosphere fragmentation during pulverised pyrite combustion: Importance of cooling. Proceedings of the Combustion Institute, 2019, 37, 2773-2780.	3.9	5
185	Mechanistic investigation into particulate matter formation during air and oxyfuel combustion of formulated water-soluble fractions of bio-oil. Proceedings of the Combustion Institute, 2019, 37, 4345-4351.	3.9	5
186	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
187	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
188	Effect of phosphorus (P) on the structure and reactivity of biochars produced from the pyrolysis of acid-washed biomass loaded with P of various forms. Proceedings of the Combustion Institute, 2021, 38, 3959-3967.	3.9	5
189	Importance of flue gas cooling conditions in particulate matter formation during biomass combustion under conditions pertinent to pulverized fuel applications. Proceedings of the Combustion Institute, 2021, 38, 5201-5208.	3.9	5
190	Contributions of Thermal Ejection and Evaporation to the Formation of Condensable Volatiles during Cellulose Pyrolysis. Energy & Fuels, 2022, 36, 1939-1947.	5.1	5
191	Effect of Air and Sea Surface Temperatures on Liquefied Natural Gas Dispersion. Energy & Fuels, 2016, 30, 9266-9274.	5.1	4
192	Differential Scanning Calorimetry Studies on the Cold Flow Properties of Fuel Mixtures from Bio-Oil, Crude Glycerol, Methanol, and/or Biochar. Energy & Fuels, 2017, 31, 8348-8355.	5.1	4
193	Effect of temperature on ternary phase diagrams of pyrolytic lignin, mixed solvent and water. Fuel, 2020, 262, 116458.	6.4	4
194	<i>Energy & Fuels</i> : The Way Forward. Energy & Fuels, 2020, 34, 6519-6520.	5.1	4
195	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
196	Characterization of Ashes from Co-Firing Biochar with Coal under Pulverized-Fuel Conditions. ACS Engineering Au, 2022, 2, 397-405.	5.1	4
197	Effect of Single/Mixed Model Solvents on the Ternary Phase Diagrams of Pyrolytic Lignin, Model Solvent, and Water. Energy & Fuels, 2020, 34, 15355-15369.	5.1	3
198	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3

#	Article	IF	CITATIONS
199	Mechanistic insights into effect of feeding rate on soot formation during rapid pyrolysis of biomass model components in a drop-tube furnace at high temperature. Proceedings of the Combustion Institute, 2021, 38, 5191-5199.	3.9	3
200	Fundamental investigation into characteristics of particulate matter produced from rapid pyrolysis of biochar in a drop-tube furnace at 1300°C. Proceedings of the Combustion Institute, 2021, 38, 5229-5236.	3.9	3
201	Virtual Special Issue: Celebrating Authors of <i>Energy & Fuels</i> Most Impactful Articles (2014–2017). Energy & Fuels, 2021, 35, 12759-12762.	5.1	3
202	Evolution of Char Properties during Rapid Pyrolysis of Woody Biomass Particles under Pulverized Fuel Conditions. Energy & Fuels, 2021, 35, 15778-15789.	5.1	3
203	2021 Pioneers in Energy Research: Vivian Yam. Energy & Fuels, 2021, 35, 18839-18844.	5.1	3
204	Selective Removal of Sodium from Low-Rank Xinjiang Coal upon Multistage Countercurrent Water Washing: Experimental Investigation and Kinetics Modeling. Energy & Fuels, 2019, 33, 2142-2152.	5.1	2
205	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
206	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
207	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
208	Cellobiulose as a Key Intermediate during Biomass Hydrothermal Conversion into Biofuels and Biochemicals: Fundamental Decomposition Mechanisms. Energy & Fuels, 2021, 35, 12200-12207.	5.1	2
209	2021 Energy and Fuels Rising Stars. Energy & Fuels, 2021, 35, 15247-15248.	5.1	2
210	6th Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2018, 32, 4065-4068.	5.1	1
211	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
212	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
213	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
214	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
215	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
216	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1

#	Article	IF	CITATIONS
217	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
218	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
219	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
220	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
221	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
222	Virtual Special Issue of 7th Sino-Australian Symposium on Advanced Coal and Biomass Utilisation Technologies. Energy & Fuels, 2020, 34, 3981-3983.	5.1	1
223	Energy Research at ACS in the Age of Open Access. ACS Omega, 2021, 6, 7967-7969.	3.5	1
224	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
225	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
226	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
227	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
228	<i>Energy & Fuels</i> Appoints New Associate Editors Shao, Dufour, and Linga. Energy & Fuels, 2020, 34, 7774-7774.	5.1	1
229	MASS AND HEAT TRANSPORT IN A COKE FUELED SHAFT FURNACE. Canadian Metallurgical Quarterly, 2006, 45, 395-408.	1.2	0
230	Special Issue on Coal Combustion and Pollutant Control. Asia-Pacific Journal of Chemical Engineering, 2007, 2, 151-151.	1.5	0
231	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
232	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	0
233	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
234	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	0

#	Article	IF	CITATIONS
235	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	Ο
236	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	0
237	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
238	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
239	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
240	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
241	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0
242	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	0
243	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	Ο
244	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
245	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
246	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
247	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
248	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
249	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
250	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
251	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0
252	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0

#	Article	IF	CITATIONS
253	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0
254	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
255	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
256	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
257	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
258	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
259	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
260	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
261	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
262	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
263	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
264	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0
265	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
266	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
267	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
268	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
269	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
270	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0

#	Article	IF	CITATIONS
271	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	Ο
272	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
273	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
274	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
275	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	Ο
276	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
277	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
278	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
279	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
280	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
281	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
282	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
283	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
284	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
285	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	Ο
286	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
287	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
288	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0

#	Article	IF	CITATIONS
289	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
290	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
291	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
292	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
293	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
294	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
295	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
296	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
297	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
301	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
302	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
306	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0

#	Article	IF	CITATIONS
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	0
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
309	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
311	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
312	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
313	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
314	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
315	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
316	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
317	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
318	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
319	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
320	Special Issue in Memory of Professor Mário Costa. Energy & Fuels, 2021, 35, 6935-6939.	5.1	0
321	Energy & Fuels Appoints New Associate Editors Rezaei, Jiang, and Goual. Energy & Fuels, 2021, 35, 11593-11593.	5.1	0
322	Significant Roles of Inherent Fine Included Mineral Particles in the Emission of PM1–10 During Pulverised Coal Combustion. , 2013, , 961-969.		0
323	Stability of cellulose xanthogenates of various metals. , 2014, , .		0
324	Effect of harvest time on the composition, structural characteristics and enzymatic hydrolysis performance ofEichhornia crassipesbiomass. , 2014, , .		0

#	Article	IF	CITATIONS
325	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	Ο
326	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
327	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
328	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
329	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
330	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
331	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
332	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
333	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
334	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
335	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	Ο
336	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
337	Celebrating 35 Years of <i>Energy & Fuels</i> . Energy & Fuels, 2021, 35, 19857-19858.	5.1	0