Kenta Yashiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3744132/publications.pdf

Version: 2024-02-01

394421 477307 1,480 32 19 29 citations h-index g-index papers 36 36 36 2874 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Alternatively activated macrophages determine repair of the infarcted adult murine heart. Journal of Clinical Investigation, 2016, 126, 2151-2166.	8.2	258
2	Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature, 2007, 450, 285-288.	27.8	208
3	EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Developmental Biology, 2012, 371, 136-145.	2.0	115
4	Left–right asymmetry in the level of active Nodal protein produced in the node is translated into left–right asymmetry in the lateral plate of mouse embryos. Developmental Biology, 2011, 353, 321-330.	2.0	91
5	TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5109-5114.	7.1	83
6	Modulated Inflammation by Injection of High-Mobility Group Box 1 Recovers Post-Infarction Chronically Failing Heart. Circulation, 2008, 118, S106-14.	1.6	79
7	The Use of Scaffold-free Cell Sheet Technique to Refine Mesenchymal Stromal Cell-based Therapy for Heart Failure. Molecular Therapy, 2013, 21, 860-867.	8.2	67
8	Tollâ€like receptor 9 protects nonâ€immune cells from stress by modulating mitochondrial <scp>ATP</scp> synthesis through the inhibition of <scp>SERCA</scp> 2. EMBO Reports, 2014, 15, 438-445.	4.5	66
9	Argonaute Utilization for miRNA Silencing Is Determined by Phosphorylation-Dependent Recruitment of LIM-Domain-Containing Proteins. Cell Reports, 2017, 20, 173-187.	6.4	57
10	Removal of maternal retinoic acid by embryonic CYP26 is required for correct Nodal expression during early embryonic patterning. Genes and Development, 2009, 23, 1689-1698.	5.9	54
11	NCK Associated Protein 1 Modulated by miRNAâ€214 Determines Vascular Smooth Muscle Cell Migration, Proliferation, and Neointima Hyperplasia. Journal of the American Heart Association, 2016, 5, .	3.7	50
12	Donor cell-type specific paracrine effects of cell transplantation for post-infarction heart failure. Journal of Molecular and Cellular Cardiology, 2009, 47, 288-295.	1.9	42
13	A Factor Underlying Late-Phase Arrhythmogenicity After Cell Therapy to the Heart. Circulation, 2008, 118, S138-44.	1.6	33
14	The use of cell-sheet technique eliminates arrhythmogenicity of skeletal myoblast-based therapy to the heart with enhanced therapeutic effects. International Journal of Cardiology, 2013, 168, 261-269.	1.7	33
15	GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Reports, 2016, 16, 1026-1038.	6.4	32
16	Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE, 2015, 10, e0140831.	2.5	31
17	Allogeneic Mesenchymal Stromal Cells Transplanted Onto the Heart Surface Achieve Therapeutic Myocardial Repair Despite Immunologic Responses in Rats. Journal of the American Heart Association, 2016, 5, .	3.7	30
18	Endocardium differentiation through Sox17 expression in endocardium precursor cells regulates heart development in mice. Scientific Reports, 2019, 9, 11953.	3.3	23

#	Article	IF	CITATIONS
19	Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol. Developmental Dynamics, 2016, 245, 157-165.	1.8	22
20	A simple and novel method for RNAâ€seq library preparation of single cell cDNA analysis by hyperactive Tn5 transposase. Developmental Dynamics, 2012, 241, 1584-1590.	1.8	20
21	Fibrin Glue-aided, Instant Epicardial Placement Enhances the Efficacy of Mesenchymal Stromal Cell-Based Therapy for Heart Failure. Scientific Reports, 2018, 8, 9448.	3.3	16
22	AMPK regulates cell shape of cardiomyocytes by modulating turnover of microtubules through CLIPâ€170. EMBO Reports, 2021, 22, e50949.	4.5	15
23	Retinoic Acid Signaling Regulates Sonic Hedgehog and Bone Morphogenetic Protein Signalings During Genital Tubercle Development. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2012, 95, 79-88.	1.4	14
24	Cell Size Critically Determines Initial Retention of Bone Marrow Mononuclear Cells in the Heart after Intracoronary Injection: Evidence from a Rat Model. PLoS ONE, 2016, 11, e0158232.	2.5	11
25	Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters. ELife, 2018, 7, .	6.0	9
26	Self-regulated left-right asymmetric expression of Pitx2c in the developing mouse limb. Developmental Biology, 2014, 395, 331-341.	2.0	8
27	Collagenous gastroduodenitis with recurrent gastric ulcer in 12â€yearâ€old girl. Pediatrics International, 2015, 57, 754-757.	0.5	7
28	A Lesson From the Thalidomide Tragedy ― <i>The Past Is Never Dead. It's Not Even Past.</i> William Faulkner, From " <i>Requiem for a Nun</i> ――. Circulation Journal, 2018, 82, 2250-2252.	1.6	3
29	Single-Cell Expression Analyses of Embryonic Cardiac Progenitor Cells. , 2016, , 85-91.		1
30	Molecular Mechanism Underlying Heterotaxy and Cardiac Isomerism. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2017, 33, 349-361.	0.0	1
31	Cardiac Progenitor Cells and Heart Development in the Early Stage Embryo. Nihon Shoni Junkanki Gakkai Zasshi = Pediatric Cardiology and Cardiac Surgery, 2019, 35, 70-81.	0.0	O
32	A Neurotrophic Factor Receptor GFRA2, a Specific Surface Antigen for Cardiac Progenitor Cells, Regulates the Process of Myocardial Compaction., 2020,, 369-371.		0