
Mari-Anne Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/374399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biopolymer Skeleton Produced by <i>Rhizobium radiobacter</i> : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie - International Edition, 2020, 59, 6368-6374.	7.2	6
2	Biopolymer Skeleton Produced by Rhizobium radiobacter : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie, 2020, 132, 6430-6436.	1.6	3
3	A Convergent Route to Enantiomers of the Bicyclic Monosaccharide Bradyrhizose Leads to Insight into the Bioactivity of an Immunologically Silent Lipopolysaccharide. Journal of Organic Chemistry, 2019, 84, 14-41.	1.7	14
4	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie - International Edition, 2017, 56, 2092-2096.	7.2	22
5	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie, 2017, 129, 2124-2128.	1.6	4
6	<i>Xanthomonas citri</i> pv. <i>citri</i> Pathotypes: LPS Structure and Function as Microbeâ€Associated Molecular Patterns. ChemBioChem, 2017, 18, 772-781.	1.3	12
7	Fungal Innate Immunity Induced by Bacterial Microbe-Associated Molecular Patterns (MAMPs). G3: Genes, Genomes, Genetics, 2016, 6, 1585-1595.	0.8	35
8	An Innate Immunity Pathway in the Moss <i>Physcomitrella patens</i> Â. Plant Cell, 2016, 28, 1328-1342.	3.1	73
9	MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science, 2013, 4, 139.	1.7	447
10	The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbeâ€associated molecular patterns (MAMPs), in plant innate immunity. Molecular Plant Pathology, 2012, 13, 95-104.	2.0	91
11	Silicon-Induced Changes in Antifungal Phenolic Acids, Flavonoids, and Key Phenylpropanoid Pathway Genes during the Interaction between Miniature Roses and the Biotrophic Pathogen <i>Podosphaera pannosa</i> Å Â. Plant Physiology, 2011, 157, 2194-2205.	2.3	119
12	<i>Arabidopsis</i> lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19824-19829.	3.3	442
13	Lipopolysaccharide and Its Interactions with Plants. , 2011, , 417-433.		2
14	A Unique Bicyclic Monosaccharide from the <i>Bradyrhizobium</i> Lipopolysaccharide and Its Role in the Molecular Interaction with Plants. Angewandte Chemie - International Edition, 2011, 50, 12610-12612.	7.2	24
15	Lipopolysaccharides and Plant Innate Immunity. Sub-Cellular Biochemistry, 2010, 53, 387-403.	1.0	19
16	Microbial glycosylated components in plant disease. , 2010, , 803-820.		1
17	Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology, 2010, 20, 406-419.	1.3	162
18	The Structures of Lipopolysaccharides from Plantâ€Associated Gramâ€Negative Bacteria. European Journal of Organic Chemistry, 2009, 2009, 5887-5896.	1.2	26

#	Article	IF	CITATIONS
19	Microbeâ€associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 2009, 10, 375-387.	2.0	76
20	The Acylation and Phosphorylation Pattern of Lipid A from <i>Xanthomonas Campestris</i> Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. ChemBioChem, 2008, 9, 896-904.	1.3	56
21	Peptidoglycan and Muropeptides from Pathogens Agrobacterium and Xanthomonas Elicit Plant Innate Immunity: Structure and Activity. Chemistry and Biology, 2008, 15, 438-448.	6.2	129
22	An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microbes and Infection, 2008, 10, 571-574.	1.0	7
23	Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation. Current Biology, 2008, 18, 1078-1083.	1.8	212
24	A Lesion-Mimic Syntaxin Double Mutant in Arabidopsis Reveals Novel Complexity of Pathogen Defense Signaling. Molecular Plant, 2008, 1, 510-527.	3.9	76
25	Invited review: Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. Journal of Endotoxin Research, 2007, 13, 69-84.	2.5	138
26	A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant Journal, 2007, 49, 302-312.	2.8	172
27	Priming: Getting Ready for Battle. Molecular Plant-Microbe Interactions, 2006, 19, 1062-1071.	1.4	1,241
28	Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant Journal, 2006, 47, 532-546.	2.8	352
29	The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO Journal, 2005, 24, 2579-2589.	3.5	480
30	The Role of Salicylic Acid in the Induction of Cell Death in Arabidopsis acd11. Plant Physiology, 2005, 138, 1037-1045.	2.3	146
31	Defense-related genes expressed in Norway spruce roots after infection with the root rot pathogen Ceratobasidium bicorne (anamorph: Rhizoctonia sp.). Tree Physiology, 2005, 25, 1533-1543.	1.4	28
32	The Elicitation of Plant Innate Immunity by Lipooligosaccharide of Xanthomonas campestris. Journal of Biological Chemistry, 2005, 280, 33660-33668.	1.6	168
33	Structure-Dependent Modulation of a Pathogen Response in Plants by Synthetic O-Antigen Polysaccharides. Journal of the American Chemical Society, 2005, 127, 2414-2416.	6.6	83
34	Biological Control of Black Rot (<i>Xanthomonas campestris</i> pv. <i>campestris</i>) of Cabbage in Tanzania with <i>Bacillus</i> strains. Journal of Phytopathology, 2004, 152, 98-105.	0.5	35
35	Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydrate Research, 2003, 338, 277-281.	1.1	47
36	The role of lipopolysaccharides in induction of plant defence responses. Molecular Plant Pathology, 2003, 4, 421-425.	2.0	77

Mari-Anne Newman

#	Article	IF	CITATIONS
37	Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiological and Molecular Plant Pathology, 2003, 62, 333-346.	1.3	166
38	p-Coumaroylnoradrenaline, a Novel Plant Metabolite Implicated in Tomato Defense against Pathogens. Journal of Biological Chemistry, 2003, 278, 43373-43383.	1.6	88
39	Prior exposure to lipopolysaccharide potentiates expression of plant defenses in response to bacteria. Plant Journal, 2002, 29, 487-495.	2.8	144
40	Induction of Hydroxycinnamoyl-Tyramine Conjugates in Pepper by Xanthomonas campestris, a Plant Defense Response Activated by hrp Gene-Dependent and hrp Gene-Independent Mechanisms. Molecular Plant-Microbe Interactions, 2001, 14, 785-792.	1.4	102
41	Regulation of the synthesis of cyclic glucan in Xanthomonas campestris by a diffusible signal molecule. Archives of Microbiology, 2001, 176, 415-420.	1.0	30
42	Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO Journal, 2001, 20, 5400-5411.	3.5	516
43	Lipopolysaccharides and plant responses to phytopathogenic bacteria. Molecular Plant Pathology, 2000, 1, 25-31.	2.0	57
44	The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Annual Review of Phytopathology, 2000, 38, 241-261.	3.5	246
45	The Activity of Lipid A and Core Components of Bacterial Lipopolysaccharides in the Prevention of the Hypersensitive Response in Pepper. Molecular Plant-Microbe Interactions, 1997, 10, 926-928.	1.4	53
46	Defense-Related Gene Induction inBrassica campestrisin Response to Defined Mutants ofXanthomonas campestriswith Altered Pathogenicity. Molecular Plant-Microbe Interactions, 1994, 7, 553.	1.4	53