
Roberto Sanchirico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743950/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dust/gas mixtures explosion regimes. Powder Technology, 2011, 205, 81-86.	4.2	102
2	CFD simulations of dust dispersion in the 20ÂL vessel: Effect of nominal dust concentration. Journal of Loss Prevention in the Process Industries, 2014, 27, 8-12.	3.3	80
3	CFD simulations of turbulent fluid flow and dust dispersion in the 20 liter explosion vessel. AICHE Journal, 2013, 59, 2485-2496.	3.6	78
4	Combined Effect of Ignition Energy and Initial Turbulence on the Explosion Behavior of Lean Gas/Dust-Air Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 7663-7670.	3.7	61
5	Advanced oxidation processes for the treatment of mineral oil-contaminated wastewaters. Water Research, 2000, 34, 620-628.	11.3	60
6	Study of the severity of hybrid mixture explosions and comparison to pure dust–air and vapour–air explosions. Journal of Loss Prevention in the Process Industries, 2011, 24, 648-655.	3.3	59
7	Effect of the nozzle type on the integrity of dust particles in standard explosion tests. Powder Technology, 2015, 279, 203-208.	4.2	58
8	On the explosion and flammability behavior of mixtures of combustible dusts. Chemical Engineering Research and Design, 2015, 94, 410-419.	5.6	37
9	Effect of pressure on the flash point of various fuels and their binary mixtures. Chemical Engineering Research and Design, 2018, 116, 615-620.	5.6	37
10	Kinetic and safety assessment for salicylic acid nitration by nitric acid/acetic acid system. Journal of Hazardous Materials, 2006, 134, 1-7.	12.4	33
11	Thermal decomposition of cumene hydroperoxide: Chemical and kinetic characterization. AICHE Journal, 2008, 54, 1579-1584.	3.6	31
12	CFD modeling and simulation of turbulent fluid flow and dust dispersion in the 20-L explosion vessel equipped with the perforated annular nozzle. Journal of Loss Prevention in the Process Industries, 2015, 38, 204-213.	3.3	30
13	The thermal decomposition of dimethoate. Journal of Hazardous Materials, 1999, 64, 283-294.	12.4	29
14	Flash point of flammable binary mixtures: Synergistic behavior. Journal of Loss Prevention in the Process Industries, 2018, 52, 1-6.	3.3	27
15	Study of the explosible properties of textile dusts. Journal of Loss Prevention in the Process Industries, 2018, 54, 110-122.	3.3	20
16	CFD Simulation of the Dispersion of Binary Dust Mixtures in the 20ÂL Vessel. Journal of Loss Prevention in the Process Industries, 2020, 67, 104231.	3.3	20
17	Salicylic Acid Nitration by Means of Nitric Acid/Acetic Acid System:Â Chemical and Kinetic Characterization. Organic Process Research and Development, 2006, 10, 1199-1204.	2.7	19
18	Volatile point of dust mixtures and hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2018, 56, 370-377.	3.3	19

ROBERTO SANCHIRICO

#	Article	IF	CITATIONS
19	Explosion of lycopodium-nicotinic acid–methane complex hybrid mixtures. Journal of Loss Prevention in the Process Industries, 2015, 36, 505-508.	3.3	18
20	Toxicity of unwanted intermediates and products formed during accidental thermal decomposition of chemicals. Journal of Hazardous Materials, 2008, 150, 433-437.	12.4	17
21	CFD simulation of turbulent flow field, feeding and dispersion of non-spherical dust particles in the standard 20†L sphere. Journal of Loss Prevention in the Process Industries, 2019, 62, 103983.	3.3	16
22	Thermal decomposition of acetic anhydride–nitric acid mixtures. Journal of Hazardous Materials, 2002, 90, 111-121.	12.4	15
23	Thermal degradation of Fenitrothion: Identification and eco-toxicity of decomposition products. Journal of Hazardous Materials, 2012, 199-200, 390-400.	12.4	15
24	Effect of turbulence spatial distribution on the deflagration index: Comparison between 20ÂL and 1Âm3 vessels. Journal of Loss Prevention in the Process Industries, 2021, 71, 104484.	3.3	15
25	Synergistic behavior of flammable dust mixtures: A novel classification. Journal of Hazardous Materials, 2020, 397, 122784.	12.4	14
26	On the pyrotechnic ignitors role in dust explosion testing: Comparison between 20 L and 1Âm ³ explosion vessels. Process Safety Progress, 2021, 40, 289-295.	1.0	13
27	Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions. Journal of Hazardous Materials, 2006, 138, 452-458.	12.4	12
28	Analysis of an Explosion in a Wool-Processing Plant. Industrial & Engineering Chemistry Research, 2012, 51, 7713-7718.	3.7	12
29	On the effect of initial pressure on the minimum explosive concentration of dust in air. Powder Technology, 2018, 336, 567-572.	4.2	12
30	Model selection and parameters estimation in kinetic thermal evaluations using semiempirical models. AICHE Journal, 2012, 58, 1869-1879.	3.6	11
31	CFD simulations of dust dispersion in the 1Âm3 explosion vessel. Journal of Loss Prevention in the Process Industries, 2020, 68, 104274.	3.3	11
32	CFD simulation of turbulent fluid flow and dust dispersion in the 1 m3 explosion vessel equipped with the rebound nozzle. Journal of Loss Prevention in the Process Industries, 2022, 76, 104755.	3.3	10
33	Thermal decomposition of ethyl parathion. Journal of Loss Prevention in the Process Industries, 1999, 12, 315-319.	3.3	9
34	A statistical approach to determine the autoignition temperature of dust clouds. Journal of Loss Prevention in the Process Industries, 2018, 56, 181-190.	3.3	9
35	Ignition mechanism of flammable dust and dust mixtures: An insight through thermogravimetric/differential scanning calorimetry analysis. AICHE Journal, 2020, 66, e16256.	3.6	8
36	Adiabatic behavior of thermal unstable compounds evaluated by means of dynamic scanning calorimetric (DSC) techniques. AICHE Journal, 2013, 59, 3806-3815.	3.6	7

ROBERTO SANCHIRICO

#	Article	IF	CITATIONS
37	A fanâ€equipped reactor for dust explosion tests. AICHE Journal, 2015, 61, 1572-1580.	3.6	7
38	Effect of initial pressure on the lower explosion limit of nicotinic acid/acetone mixture. Journal of Loss Prevention in the Process Industries, 2020, 64, 104075.	3.3	7
39	Energy Recovery from Vinery Waste: Dust Explosion Issues. Applied Sciences (Switzerland), 2021, 11, 11188.	2.5	6
40	On the flammable behavior of non-traditional dusts: Dimensionless numbers evaluation for nylon 6,6 short fibers. Journal of Loss Prevention in the Process Industries, 2022, 78, 104815.	3.3	6
41	(S)-Nitroxycarnitine nitrate production from (S)-carnitine by using acetic anhydride/nitric acid/acetic acid mixtures: safety assessment. Journal of Hazardous Materials, 2004, 113, 1-10.	12.4	5
42	Solubility of 5-Nitro- and 3-Nitrosalicylic Acids in an Acetic Acid/Nitric Acid Mixture. Journal of Chemical & Engineering Data, 2007, 52, 122-125.	1.9	5
43	Dust explosions: Emerging/unique scenarios. Methods in Chemical Process Safety, 2019, 3, 283-316.	1.0	4
44	Thermal Decomposition of 2-Nitrobenzoic Acid. Journal of Chemical Technology and Biotechnology, 1997, 69, 297-300.	3.2	3
45	On the use of the generalized autocatalytic models: The thermal decomposition of 3,5â€dinitroâ€4â€methylbenzoic acid. AICHE Journal, 2015, 61, 1300-1308.	3.6	2
46	Hazard assessment of 4-nitrobenzoic acid production process. Journal of Loss Prevention in the Process Industries, 1997, 10, 205-209.	3.3	1
47	Adiabatic time to maximum rate evaluation using an analytical approach. AICHE Journal, 2018, 64, 172-179.	3.6	1