
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Event-driven proto-object based saliency in 3D space to attract a robot's attention. Scientific Reports, 2022, 12, 7645.	1.6	6
2	Analysis of spiking synchrony in visual cortex reveals distinct types of top-down modulation signals for spatial and object-based attention. PLoS Computational Biology, 2021, 17, e1008829.	1.5	3
3	Naturalistic Spike Trains Drive State-Dependent Homeostatic Plasticity in Superficial Layers of Visual Cortex. Frontiers in Synaptic Neuroscience, 2021, 13, 663282.	1.3	2
4	A Neuromorphic Proto-Object Based Dynamic Visual Saliency Model With a Hybrid FPGA Implementation. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 580-594.	2.7	7
5	Standing out in a small crowd: The role of display size in attracting attention. Visual Cognition, 2021, 29, 587-591.	0.9	14
6	Proto-Object Based Saliency Model With Texture Detection Channel. Frontiers in Computational Neuroscience, 2020, 14, 541581.	1.2	7
7	The formation of preference in risky choice. PLoS Computational Biology, 2019, 15, e1007201.	1.5	23
8	Live Demonstration: Real-Time Implementation of Proto-Object Based Visual Saliency Model. , 2019, , .		3
9	Unique objects attract attention even when faint. Vision Research, 2019, 160, 60-71.	0.7	10
10	Figure-ground representation in deep neural networks. , 2019, , .		0
11	Proto-object based saliency for event-driven cameras. , 2019, , .		7
12	Risk-taking bias in human decision-making is encoded via a right–left brain push–pull system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1404-1413.	3.3	22
13	Figure-Ground Organization in Natural Scenes: Performance of a Recurrent Neural Model Compared with Neurons of Area V2. ENeuro, 2019, 6, ENEURO.0479-18.2019.	0.9	8
14	Analytically determining frequency and amplitude of spontaneous alpha oscillation in Jansen's neural mass model using the describing function method. Chinese Physics B, 2018, 27, 048701.	0.7	7
15	Computational stereo-vision model of proto-object based saliency in three-dimensional space. , 2018, , .		4
16	Proto-Object Based Saliency Model with Second-Order Texture Feature. , 2018, , .		3
17	Head movements are correlated with other measures of visual attention at smaller spatial scales. , 2018, , .		2
18	Audio-Visual beamforming with the Eigenmike microphone array an omni-camera and cognitive auditory features. , 2017, , .		0

#	Article	IF	CITATIONS
19	Attentive pointing in natural scenes correlates with other measures of attention. Vision Research, 2017, 135, 54-64.	0.7	4
20	Head movements during visual exploration of natural images in virtual reality. , 2017, , .		18
21	Short-term depression and transient memory in sensory cortex. Journal of Computational Neuroscience, 2017, 43, 273-294.	0.6	6
22	A recurrent neural model for proto-object based contour integration and figure-ground segregation. Journal of Computational Neuroscience, 2017, 43, 227-242.	0.6	14
23	Neuromorphic visual saliency implementation using stochastic computation. , 2017, , .		7
24	Spike synchrony generated by modulatory common input through NMDA-type synapses. Journal of Neurophysiology, 2016, 116, 1418-1433.	0.9	21
25	Neural mechanisms of selective attention in the somatosensory system. Journal of Neurophysiology, 2016, 116, 1218-1231.	0.9	57
26	Modeling Attention-Induced Reduction of Spike Synchrony in the Visual Cortex. Lecture Notes in Computer Science, 2016, , 359-366.	1.0	2
27	A proto-object based saliency model in three-dimensional space. Vision Research, 2016, 119, 42-49.	0.7	25
28	Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller. Scientific Reports, 2016, 6, 27344.	1.6	25
29	The Edge of Stability: Response Times and Delta Oscillations in Balanced Networks. PLoS Computational Biology, 2016, 12, e1005121.	1.5	8
30	The role of horizontal connections for the modulation of border-ownership selective neurons in visual cortex. BMC Neuroscience, 2015, 16, .	0.8	0
31	A neural model for perceptual organization of 3D surfaces. , 2015, , .		3
32	Neuronal common input strength is unidentifiable from average firing rates and synchrony. , 2015, , .		1
33	Closed form jitter methods for neuronal spike train analysis. , 2015, , .		2
34	How is motion integrated into a proto-object based visual saliency model?. , 2015, , .		10
35	Temporal Correlation Mechanisms and Their Role in Feature Selection: A Single-Unit Study in Primate Somatosensory Cortex. PLoS Biology, 2014, 12, e1002004.	2.6	17
36	Local spectral anisotropy is a valid cue for figure–ground organization in natural scenes. Vision Research, 2014, 103, 116-126.	0.7	12

#	Article	IF	CITATIONS
37	A model of proto-object based saliency. Vision Research, 2014, 94, 1-15.	0.7	84
38	Visual Attention and Applications in Multimedia Technologies. Proceedings of the IEEE, 2013, 101, 2058-2067.	16.4	48
39	Computing 3D saliency from a 2D image. , 2013, , .		6
40	Proto-object based visual saliency model with a motion-sensitive channel. , 2013, , .		9
41	A simple model of mechanotransduction in primate glabrous skin. Journal of Neurophysiology, 2013, 109, 1350-1359.	0.9	42
42	Mechanisms underlying the influence of saliency on value-based decisions. Journal of Vision, 2013, 13, 18-18.	0.1	18
43	Audio-visual saliency map: Overview, basic models and hardware implementation. , 2013, , .		10
44	Locally Contractive Dynamics in Generalized Integrate-and-Fire Neurons. SIAM Journal on Applied Dynamical Systems, 2013, 12, 1474-1514.	0.7	11
45	Medial axis generation in a model of perceptual organization. , 2012, , .		6
46	Figure-ground classification based on spectral properties of boundary image patches. , 2012, , .		1
47	A network model of multiplicative attentional modulation. , 2012, , .		Ο
48	Parameter Estimation of a Spiking Silicon Neuron. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6, 133-141.	2.7	3
49	Event-related simulation of neural processing in complex visual scenes. , 2011, , .		2
50	Extremal edges: Evidence in natural images. , 2011, , .		4
51	Improved Integral Equation Solution for the First Passage Time of Leaky Integrate-and-Fire Neurons. Neural Computation, 2011, 23, 421-434.	1.3	12
52	Estimating Parameters of Generalized Integrate-and-Fire Neurons from the Maximum Likelihood of Spike Trains. Neural Computation, 2011, 23, 2833-2867.	1.3	21
53	Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7583-7588.	3.3	79
54	Self-organized criticality occurs in non-conservative neuronal networks during â€~up' states. Nature Physics, 2010, 6, 801-805.	6.5	158

#	Article	IF	CITATIONS
55	A log-domain implementation of the Mihalas-Niebur neuron model. , 2010, , .		29
56	Optimization Methods for Spiking Neurons and Networks. IEEE Transactions on Neural Networks, 2010, 21, 1950-1962.	4.8	42
57	Mechanisms of perceptual organization provide auto-zoom and auto-localization for attention to objects. Journal of Vision, 2010, 10, 979-979.	0.1	3
58	Everyone knows what is interesting: Salient locations which should be fixated. Journal of Vision, 2009, 9, 25-25.	0.1	64
59	A switched capacitor implementation of the generalized linear integrate-and-fire neuron. , 2009, , .		38
60	Temporal tagging of attended objects. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2479-2480.	3.3	0
61	A Generalized Linear Integrate-and-Fire Neural Model Produces Diverse Spiking Behaviors. Neural Computation, 2009, 21, 704-718.	1.3	142
62	Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography. Journal of Neuroscience, 2008, 28, 11526-11536.	1.7	592
63	High-frequency gamma activity (80–150Hz) is increased in human cortex during selective attention. Clinical Neurophysiology, 2008, 119, 116-133.	0.7	201
64	Effect of Stimulus Intensity on the Spike–Local Field Potential Relationship in the Secondary Somatosensory Cortex. Journal of Neuroscience, 2008, 28, 7334-7343.	1.7	118
65	A Model for Neuronal Competition During Development. Science, 2008, 320, 369-373.	6.0	168
66	Exact Solutions for Rate and Synchrony in Recurrent Networks of Coincidence Detectors. Neural Computation, 2008, 20, 2637-2661.	1.3	4
67	Synchrony and the binding problem in macaque visual cortex. Journal of Vision, 2008, 8, 30.	0.1	56
68	Neuronal cable theory. Scholarpedia Journal, 2008, 3, 2674.	0.3	21
69	Electrical properties of cell membranes. Scholarpedia Journal, 2008, 3, 7166.	0.3	14
70	Generation of Synthetic Spike Trains with Defined Pairwise Correlations. Neural Computation, 2007, 19, 1720-1738.	1.3	28
71	Synchrony: A Neural Correlate of Somatosensory Attention. Journal of Neurophysiology, 2007, 98, 1645-1661.	0.9	42
72	A Neural Model of Figure–Ground Organization. Journal of Neurophysiology, 2007, 97, 4310-4326.	0.9	231

#	Article	IF	CITATIONS
73	A NOVEL METHOD FOR VISUALIZING FUNCTIONAL CONNECTIVITY USING PRINCIPAL COMPONENT ANALYSIS. International Journal of Neuroscience, 2006, 116, 419-429.	0.8	14
74	Correlated Multiplicative Modulation in Coupled Oscillator Systems: A Model of Selective Attention. Progress of Theoretical Physics Supplement, 2006, 161, 336-339.	0.2	0
75	Rate and Synchrony in Feedforward Networks of Coincidence Detectors: Analytical Solution. Neural Computation, 2005, 17, 881-902.	1.3	8
76	Phase transitions in multiplicative competitive processes. Physical Review E, 2005, 72, 011912.	0.8	1
77	Stimulus-Driven Guidance of Visual Attention in Natural Scenes. , 2005, , 240-245.		6
78	A feasibility test for perceptually adaptive level of detail rendering on desktop systems. , 2004, , .		17
79	Texture contrast attracts overt visual attention in natural scenes. European Journal of Neuroscience, 2004, 19, 783-789.	1.2	88
80	Correlated Inhibitory and Excitatory Inputs to the Coincidence Detector: Analytical Solution. IEEE Transactions on Neural Networks, 2004, 15, 957-962.	4.8	6
81	Synaptic Depression Leads to Nonmonotonic Frequency Dependence in the Coincidence Detector. Neural Computation, 2003, 15, 2339-2358.	1.3	8
82	The Effects of Input Rate and Synchrony on a Coincidence Detector: Analytical Solution. Neural Computation, 2003, 15, 539-547.	1.3	19
83	Scene content selected by active vision. Spatial Vision, 2003, 16, 125-154.	1.4	261
84	Variable-Resolution Displays: A Theoretical, Practical, and Behavioral Evaluation. Human Factors, 2002, 44, 611-629.	2.1	57
85	Modeling the role of salience in the allocation of overt visual attention. Vision Research, 2002, 42, 107-123.	0.7	1,158
86	Synchrony: a neuronal mechanism for attentional selection?. Current Opinion in Neurobiology, 2002, 12, 190-194.	2.0	139
87	Electrophysiological correlates of synchronous neural activity and attention: a short review. BioSystems, 2002, 67, 157-166.	0.9	27
88	Research, robots, and reality: A statement on current trends in biorobotics. Behavioral and Brain Sciences, 2001, 24, 1072-1073.	0.4	30
89	Sensorimotor contingencies do not replace internal representations, and mastery is not necessary for perception. Behavioral and Brain Sciences, 2001, 24, 994-995.	0.4	2

90 Evaluating variable resolution displays with visual search. , 2000, , .

38

#	Article	IF	CITATIONS
91	Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention. Journal of Cognitive Neuroscience, 1996, 8, 311-327.	1.1	157
92	Design Principles of Columnar Organization in Visual Cortex. Neural Computation, 1994, 6, 602-614.	1.3	33
93	A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience, 1994, 1, 141-158.	0.6	154
94	Cortical column design: a link between the maps of preferred orientation and orientation tuning strength?. Biological Cybernetics, 1993, 70, 1-13.	0.6	9
95	Theory of the locomotion of nematodes: Control of the somatic motor neurons by interneurons. Mathematical Biosciences, 1993, 118, 51-82.	0.9	56
96	An oscillation-based model for the neuronal basis of attention. Vision Research, 1993, 33, 2789-2802.	0.7	149
97	Dynamics of Populations of Integrate-and-Fire Neurons, Partial Synchronization and Memory. Neural Computation, 1993, 5, 570-586.	1.3	50
98	Generation of Direction Selectivity by Isotropic Intracortical Connections. Neural Computation, 1992, 4, 332-340.	1.3	6
99	Theory of the locomotion of nematodes. Biophysical Journal, 1991, 60, 1132-1146.	0.2	120
100	Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Physical Review Letters, 1991, 67, 2753-2756.	2.9	195
101	Oscillator-phase coupling for different two-dimensional network connectivities. Physical Review A, 1991, 44, 6895-6904.	1.0	41