Julie St-Pierre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743751/publications.pdf

Version: 2024-02-01

47006 18,845 91 47 citations h-index papers

g-index 96 96 96 26370 docs citations times ranked citing authors all docs

62596

80

#	Article	IF	CITATIONS
1	AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12017-12022.	7.1	2,045
2	Suppression of Reactive Oxygen Species and Neurodegeneration by the PGC-1 Transcriptional Coactivators. Cell, 2006, 127, 397-408.	28.9	1,948
3	Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 9, 425-434.	16.8	1,390
4	Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain. Journal of Biological Chemistry, 2002, 277, 44784-44790.	3.4	1,316
5	Superoxide activates mitochondrial uncoupling proteins. Nature, 2002, 415, 96-99.	27.8	1,236
6	Defects in Adaptive Energy Metabolism with CNS-Linked Hyperactivity in PGC-1 \hat{l}_{\pm} Null Mice. Cell, 2004, 119, 121-135.	28.9	1,074
7	mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 2013, 18, 698-711.	16.2	647
8	Err and Gabpa/b specify PGC-1Â-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6570-6575.	7.1	627
9	Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006, 3, 333-341.	16.2	548
10	PGC1α and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. Journal of Cell Science, 2012, 125, 4963-4971.	2.0	545
11	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	6.6	513
12	Bioenergetic Analysis of Peroxisome Proliferator-activated Receptor Î ³ Coactivators 1α and 1Î ² (PGC-1α and) Tj	ETQ:q0 0 0) rgBT/Overlo
13	PDK1-Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast Cancer. Cell Metabolism, 2015, 22, 577-589.	16.2	430
14	AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species. Cell Reports, 2017, 21, 1-9.	6.4	405
15	mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 2015, 14, 473-480.	2.6	397
16	Metformin directly acts on mitochondria to alter cellular bioenergetics. Cancer & Metabolism, 2014, 2, 12.	5.0	330
17	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic \hat{l}^2 cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	8.2	300
18	Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radical Biology and Medicine, 2003, 35, 938-948.	2.9	279

#	Article	IF	CITATIONS
19	Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1 \hat{A} : modulation by p38 MAPK. Genes and Development, 2004, 18, 278-289.	5.9	263
20	miR-378 â $$ Mediates Metabolic Shift in Breast Cancer Cells via the PGC- $\hat{1}^2$ /ERR $\hat{1}^3$ Transcriptional Pathway. Cell Metabolism, 2010, 12, 352-361.	16.2	254
21	mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. Molecular Cell, 2017, 67, 922-935.e5.	9.7	249
22	A fundamental system of cellular energy homeostasis regulated by PGC-1α. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7933-7938.	7.1	184
23	PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs. Cell Metabolism, 2017, 26, 778-787.e5.	16.2	181
24	nanoCAGE reveals $5\hat{a} \in ^2$ UTR features that define specific modes of translation of functionally related MTOR-sensitive mRNAs. Genome Research, 2016, 26, 636-648.	5.5	177
25	Superoxide-mediated activation of uncoupling protein 2 causes pancreatic \hat{l}^2 cell dysfunction. Journal of Clinical Investigation, 2003, 112, 1831-1842.	8.2	164
26	Going with the flow or life in the fast lane: contrasting mitochondrial responses to thermal change. Journal of Experimental Biology, 2002, 205, 2237-2249.	1.7	154
27	Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8670-8674.	7.1	151
28	The PGC-1/ERR signaling axis in cancer. Oncogene, 2013, 32, 3483-3490.	5.9	145
29	Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis. Cell Reports, 2019, 27, 3902-3915.e6.	6.4	144
30	Polo Kinase Regulates Mitotic Chromosome Condensation by Hyperactivation of Condensin DNA Supercoiling Activity. Molecular Cell, 2009, 34, 416-426.	9.7	136
31	PGC-1α supports glutamine metabolism in breast cancer. Cancer & Metabolism, 2013, 1, 22.	5.0	130
32	Surviving hypoxia without really dying. Comparative Biochemistry and Physiology Part A, Molecular & Lamp; Integrative Physiology, 2000, 126, 481-490.	1.8	127
33	Serine Deprivation Enhances Antineoplastic Activity of Biguanides. Cancer Research, 2014, 74, 7521-7533.	0.9	113
34	$ERR\hat{l}_{\pm}$ mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nature Communications, 2016, 7, 12156.	12.8	98
35	Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes and Development, 2016, 30, 1034-1046.	5.9	83
36	Modulation of Leptin Resistance by Protein Tyrosine Phosphatases. Cell Metabolism, 2012, 15, 292-297.	16.2	79

#	Article	IF	CITATIONS
37	Metabolic Fitness and Plasticity in Cancer Progression. Trends in Cancer, 2020, 6, 49-61.	7.4	76
38	The PGC- $\hat{l}_{\pm}/\text{ERR}\hat{l}_{\pm}$ Axis Represses One-Carbon Metabolism and Promotes Sensitivity to Anti-folate Therapy in Breast Cancer. Cell Reports, 2016, 14, 920-931.	6.4	73
39	Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC- $1\hat{l}\pm$. Nature Communications, 2014, 5, 3569.	12.8	64
40	Estrogen-related receptors are targetable ROS sensors. Genes and Development, 2020, 34, 544-559.	5.9	64
41	Title is missing!. Fish Physiology and Biochemistry, 1997, 16, 531-541.	2.3	62
42	Adaptive plasticity of skeletal muscle energetics in hibernating frogs:mitochondrial proton leak during metabolic depression. Journal of Experimental Biology, 2002, 205, 2287-2296.	1.7	62
43	Translational and HIF-1α-Dependent Metabolic Reprogramming Underpin Metabolic Plasticity and Responses to Kinase Inhibitors and Biguanides. Cell Metabolism, 2018, 28, 817-832.e8.	16.2	61
44	Metabolic Profiles Associated With Metformin Efficacy in Cancer. Frontiers in Endocrinology, 2018, 9, 372.	3.5	61
45	Androgen-Dependent Repression of ERRÎ ³ Reprograms Metabolism in Prostate Cancer. Cancer Research, 2017, 77, 378-389.	0.9	59
46	Aerobic Capacity of Frog Skeletal Muscle during Hibernation. Physiological and Biochemical Zoology, 2001, 74, 390-397.	1.5	54
47	Primary causes of decreased mitochondrial oxygen consumption during metabolic depression in snail cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 282, R372-R382.	1.8	52
48	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307-311.	3.7	49
49	RSK Regulates PFK-2 Activity to Promote Metabolic Rewiring in Melanoma. Cancer Research, 2018, 78, 2191-2204.	0.9	47
50	PGC-1α Promotes the Growth of ErbB2/Neu–Induced Mammary Tumors by Regulating Nutrient Supply. Cancer Research, 2012, 72, 1538-1546.	0.9	45
51	Stomatin-like Protein 2 Deficiency in T Cells Is Associated with Altered Mitochondrial Respiration and Defective CD4+ T Cell Responses. Journal of Immunology, 2012, 189, 4349-4360.	0.8	44
52	The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS. Metabolomics, 2013, 9, 1019-1030.	3.0	44
53	Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle, 2010, 9, 3263-3275.	2.6	43
54	Impact of PGC-1α on the topology and rate of superoxide production by the mitochondrial electron transport chain. Free Radical Biology and Medicine, 2011, 51, 2243-2248.	2.9	41

#	Article	IF	Citations
55	Carbon Source and Myc Expression Influence the Antiproliferative Actions of Metformin. Cancer Research, 2012, 72, 6257-6267.	0.9	39
56	Metabolic depression and enhanced O2 affinity of mitochondria in hypoxic hypometabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R1205-R1214.	1.8	35
57	Stable Isotope Tracer Analysis in Isolated Mitochondria from Mammalian Systems. Metabolites, 2014, 4, 166-183.	2.9	33
58	Seasonal cycles of mitochondrial ADP sensitivity and oxidative capacities in trout oxidative muscle. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1999, 169, 474-480.	1.5	31
59	Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2. Nature Communications, 2019, 10, 3960.	12.8	30
60	Alterations in Cellular Energy Metabolism Associated with the Antiproliferative Effects of the ATM Inhibitor KU-55933 and with Metformin. PLoS ONE, 2012, 7, e49513.	2.5	29
61	Divergent Role of Estrogen-Related Receptor \hat{l}_{\pm} in Lipid- and Fasting-Induced Hepatic Steatosis in Mice. Endocrinology, 2018, 159, 2153-2164.	2.8	29
62	Inhibition of DNMT1 and ERRα crosstalk suppresses breast cancer via derepression of IRF4. Oncogene, 2020, 39, 6406-6420.	5.9	25
63	A salicylic acid derivative extends the lifespan of <i>Caenorhabditis elegans</i> by activating autophagy and the mitochondrial unfolded protein response. Aging Cell, 2018, 17, e12830.	6.7	24
64	STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nature Communications, 2021, 12, 3299.	12.8	24
65	Peroxisome proliferatorâ€activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging. Aging Cell, 2019, 18, e12993.	6.7	23
66	Resistance to different anthracycline chemotherapeutics elicits distinct and actionable primary metabolic dependencies in breast cancer. ELife, 2021, 10, .	6.0	23
67	Perturbations of cancer cell metabolism by the antidiabetic drug canagliflozin. Neoplasia, 2021, 23, 391-399.	5. 3	18
68	PRL2 links magnesium flux and sex-dependent circadian metabolic rhythms. JCI Insight, 2017, 2, .	5.0	18
69	AMP decreases the efficiency of skeletal-muscle mitochondria. Biochemical Journal, 2000, 351, 307.	3.7	14
70	Metabolomics Analyses of Cancer Cells in Controlled Microenvironments. Methods in Molecular Biology, 2016, 1458, 273-290.	0.9	14
71	Altered mitochondrial fusion drives defensive glutathione synthesis in cells able to switch to glycolytic ATP production. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118854.	4.1	14
72	Interplay between ShcA Signaling and PGC-1α Triggers Targetable Metabolic Vulnerabilities in Breast Cancer. Cancer Research, 2018, 78, 4826-4838.	0.9	10

#	Article	IF	CITATIONS
73	Methotrexate elicits pro-respiratory and anti-growth effects by promoting AMPK signaling. Scientific Reports, 2020, 10, 7838.	3.3	10
74	Mitochondrial Proton Conductance, Standard Metabolic Rate and Metabolic Depression. , 2000, , 413-430.		10
75	Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell, 2006, 10, 172.	16.8	8
76	HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene, 2022, 41, 1701-1717.	5.9	8
77	Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006, 4, 97.	16.2	7
78	Nucleus to Mitochondria: Lost in Transcription, Found in Translation. Developmental Cell, 2016, 37, 490-492.	7.0	5
79	Food for Growth: Distinct Nutrient Preferences between Primary Tumors and Metastases. Molecular Cell, 2021, 81, 220-222.	9.7	1
80	Translational and HIF11-Dependent Metabolic Reprograming Underpin Oncometabolome Plasticity and Synergy Between Oncogenic Kinase Inhibitors and Biguanides. SSRN Electronic Journal, 0, , .	0.4	1
81	Struggling for breath in Sherbrooke 1st Symposium on "One mitochondrion, many diseases―in Sherbrooke, Québec, Canada, March 11th, 2015. Microbial Cell, 2015, 2, 208-213.	3.2	1
82	`DON'T HOLD YOUR BREATH', OR SHOULD YOU?. Journal of Experimental Biology, 2003, 206, 1769-1770.	1.7	0
83	SLEEPY MITOCHONDRIA. Journal of Experimental Biology, 2003, 206, 2907-2908.	1.7	0
84	OXYGEN IS UP ON THE SOCIAL SCENE. Journal of Experimental Biology, 2004, 207, vii-vii.	1.7	0
85	MITOCHONDRIA ON THE ROCKS. Journal of Experimental Biology, 2004, 207, v-v.	1.7	0
86	A HEALTHY BREATHING INTERRUPTION. Journal of Experimental Biology, 2005, 208, vii-viii.	1.7	0
87	THE ENEMY WITHIN. Journal of Experimental Biology, 2005, 208, vii-vii.	1.7	0
88	Impact of PGC-1α On the Topology and Rate of Superoxide Production by the Mitochondrial Electron Transport Chain. Free Radical Biology and Medicine, 2011, 51, S131-S132.	2.9	0
89	Dual mode of action of metformin on mitochondrial metabolism. Cancer & Metabolism, 2014, 2, .	5.0	0
90	Abstract 2436: Regulation of breast cancer cell metabolism by the AMPK/ERR/PGC pathway. , 2014, , .		0

#	Article	IF	CITATIONS
91	The Essential Role of Primary Caregiver in Early Detection of Familial Hypercholesterolemia and Cardiovascular Prevention. Current Pediatric Reviews, 2018, 13, 260-264.	0.8	O