
Daniel A Chamovitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ulvan crude extract's chemical and biophysical profile and its effect as a biostimulant on Arabidopsis thaliana. Algal Research, 2022, 62, 102609.	4.6	4
2	Overexpression of the ribosomal S30 subunit leads to indoleâ€3 arbinol tolerance in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 105, 668-677.	5.7	2
3	CSN5A Subunit of COP9 Signalosome Is Required for Resetting Transcriptional Stress Memory after Recurrent Heat Stress in Arabidopsis. Biomolecules, 2021, 11, 668.	4.0	12
4	Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecology Letters, 2019, 22, 1483-1492.	6.4	79
5	Role of Cop9 Signalosome Subunits in the Environmental and Hormonal Balance of Plant. Biomolecules, 2019, 9, 224.	4.0	22
6	What do plants really know?. Seminars in Cell and Developmental Biology, 2019, 92, 113.	5.0	1
7	CSN5A Subunit of COP9 Signalosome Temporally Buffers Response to Heat in Arabidopsis. Biomolecules, 2019, 9, 805.	4.0	10
8	The COP9 signalosome influences the epigenetic landscape of <i>Arabidopsis thaliana</i> . Bioinformatics, 2019, 35, 2718-2723.	4.1	9
9	Indole-3-carbinol: a plant hormone combatting cancer. F1000Research, 2018, 7, 689.	1.6	51
10	Plants are intelligent; now what?. Nature Plants, 2018, 4, 622-623.	9.3	24
11	Wounding of Arabidopsis leaves induces indoleâ€3â€carbinolâ€dependent autophagy in roots of <i>Arabidopsis thaliana</i> . Plant Journal, 2017, 91, 779-787.	5.7	20
12	Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 2017, 357, 93-97.	12.6	781
13	Multidimensional patterns of metabolic response in abiotic stress-induced growth of Arabidopsis thaliana. Plant Molecular Biology, 2016, 92, 689-699.	3.9	11
14	The glucosinolate breakdown product indoleâ€3â€carbinol acts as an auxin antagonist in roots of <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2015, 82, 547-555.	5.7	98
15	The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Research, 2015, 43, 4517-4530.	14.5	32
16	The effect of indole-3-carbinol on PIN1 and PIN2 in Arabidopsis roots. Plant Signaling and Behavior, 2015, 10, e1062200.	2.4	20
17	Drosophila COP9 signalosome subunit 7 interacts with multiple genomic loci to regulate development. Nucleic Acids Research, 2014, 42, 9761-9770.	14.5	18
18	Protein competition switches the function of COP9 from self-renewal to differentiation. Nature, 2014, 514, 233-236.	27.8	51

DANIEL A CHAMOVITZ

#	Article	IF	CITATIONS
19	Analyzing growing plants from 4D point cloud data. ACM Transactions on Graphics, 2013, 32, 1-10.	7.2	71
20	What a Plant Smells. Scientific American, 2012, 306, 62-65.	1.0	21
21	The Organization of a CSN5-containing Subcomplex of the COP9 Signalosome. Journal of Biological Chemistry, 2012, 287, 42031-42041.	3.4	25
22	Rooted in Sensation: Smell. New Scientist, 2012, 215, 36.	0.0	0
23	Rooted in Sensation: Touch. New Scientist, 2012, 215, 36.	0.0	0
24	Rooted in Sensation: The five sense of plants. New Scientist, 2012, 215, 34-35.	0.0	1
25	Rooted in Sensation: Hearing. New Scientist, 2012, 215, 37.	0.0	1
26	Rooted in Sensation: Sight. New Scientist, 2012, 215, 35.	0.0	1
27	Rooted in Sensation: Taste. New Scientist, 2012, 215, 37.	0.0	6
28	COP9 signalosome subunit 7 from Arabidopsis interacts with and regulates the small subunit of ribonucleotide reductase (RNR2). Plant Molecular Biology, 2011, 77, 77-89.	3.9	11
29	Lab Family Feud. Science, 2010, 330, 1177-1177.	12.6	1
30	The COP9 Signalosome Is Required for Light-Dependent Timeless Degradation and Drosophila Clock Resetting. Journal of Neuroscience, 2009, 29, 1152-1162.	3.6	33
31	Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Reports, 2009, 10, 352-358.	4.5	99
32	Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network. BMC Systems Biology, 2009, 3, 86.	3.0	38
33	Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant Journal, 2008, 53, 300-311.	5.7	47
34	Cop9 signalosome subunit 8 (CSN8) is essential for Drosophila development. Genes To Cells, 2008, 13, 221-231.	1.2	32
35	Arabidopsis eIF3e interacts with subunits of the ribosome, Cop9 signalosome and proteasome. Plant Signaling and Behavior, 2008, 3, 409-411.	2.4	21
36	The <i>Arabidopsis</i> COP9 Signalosome Subunit 7 Is a Model PCI Domain Protein with Subdomains Involved in COP9 Signalosome Assembly. Plant Cell, 2008, 20, 2815-2834.	6.6	59

DANIEL A CHAMOVITZ

#	Article	IF	CITATIONS
37	A mutation in the tomato <i>DDB1</i> gene affects cell and chloroplast compartment size and CDT1 transcript. Plant Signaling and Behavior, 2008, 3, 641-649.	2.4	17
38	The Proto-Oncogene Int6 Is Essential for Neddylation of Cul1 and Cul3 in Drosophila. PLoS ONE, 2008, 3, e2239.	2.5	9
39	Genomic analysis of COP9 signalosome function in Drosophila melanogaster reveals a role in temporal regulation of gene expression. Molecular Systems Biology, 2007, 3, 108.	7.2	41
40	COP9 signalosome subunit 5 (CSN5/Jab1) regulates the development of the Drosophila immune system: effects on Cactus, Dorsal and hematopoiesis. Genes To Cells, 2007, 12, 183-195.	1.2	51
41	Characterization and Purification of Kinase Activities against Arabidopsis COP9 Signalosome Subunit 7. Israel Journal of Chemistry, 2006, 46, 239-246.	2.3	7
42	Expression, purification and crystallization of a PCI domain from the COP9 signalosome subunit 7 (CSN7). Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1138-1140.	0.7	2
43	Growth suppression induced by the TRC8 hereditary kidney cancer gene is dependent upon JAB1/CSN5. Oncogene, 2005, 24, 3503-3511.	5.9	11
44	Translational Regulation via 5′ mRNA Leader Sequences Revealed by Mutational Analysis of the Arabidopsis Translation Initiation Factor Subunit eIF3h. Plant Cell, 2004, 16, 3341-3356.	6.6	87
45	The COP9 Signalosome: Mediating Between Kinase Signaling and Protein Degradation. Current Protein and Peptide Science, 2004, 5, 185-189.	1.4	49
46	Protein Homeostasis: A Degrading Role for Int6/eIF3e. Current Biology, 2003, 13, R323-R325.	3.9	30
47	A Systems Approach to the COP9 Signalosome. Plant Physiology, 2003, 132, 426-427.	4.8	3
48	Identification of a Light-regulated Protein Kinase Activity from Seedlings of Arabidopsis thaliana¶. Photochemistry and Photobiology, 2002, 75, 178.	2.5	17
49	Drosophila JAB1/CSN5 Acts in Photoreceptor Cells to Induce Clial Cells. Neuron, 2002, 33, 35-46.	8.1	88
50	The COP9 signalosome. Current Biology, 2002, 12, R232.	3.9	34
51	COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in <i>Drosophila melanogaster</i> . Development (Cambridge), 2002, 129, 4399-4409.	2.5	116
52	COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development (Cambridge), 2002, 129, 4399-409.	2.5	69
53	JAB1/CSN5 and the COP9 signalosome. EMBO Reports, 2001, 2, 96-101.	4.5	164
54	PCI complexes: pretty complex interactions in diverse signaling pathways. Trends in Plant Science, 2001, 6, 379-386.	8.8	78

DANIEL A CHAMOVITZ

#	Article	IF	CITATIONS
55	Dissection of the Light Signal Transduction Pathways Regulating the Two <i>Early Light-Induced Protein</i> Genes in Arabidopsis. Plant Physiology, 2001, 127, 986-997.	4.8	55
56	Arabidopsis eIF3e (INT-6) Associates with Both eIF3c and the COP9 Signalosome Subunit CSN7. Journal of Biological Chemistry, 2001, 276, 334-340.	3.4	74
57	Dissection of the Light Signal Transduction Pathways Regulating the Two Early Light-Induced Protein Genes in Arabidopsis. Plant Physiology, 2001, 127, 986-997.	4.8	5
58	The COP9 signalosome: from light signaling to general developmental regulation and back. Current Opinion in Plant Biology, 2000, 3, 387-393.	7.1	45
59	Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends in Genetics, 2000, 16, 202-203.	6.7	136
60	Arabidopsis FUSCA5 Encodes a Novel Phosphoprotein That Is a Component of the COP9 Complex. Plant Cell, 1999, 11, 839.	6.6	1
61	Arabidopsis FUSCA5 Encodes a Novel Phosphoprotein That Is a Component of the COP9 Complex. Plant Cell, 1999, 11, 839-848.	6.6	72
62	The COP9 signalosome is essential for development of Drosophila melanogaster. Current Biology, 1999, 9, 1187-S4.	3.9	152
63	TheArabidopsishomologue of an eIF3 complex subunit associates with the COP9 complex1. FEBS Letters, 1998, 439, 173-179.	2.8	52
64	Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus Mutations. Plant Cell, 1998, 10, 1779.	6.6	2
65	Arabidopsis Homologs of a c-Jun Coactivator Are Present Both in Monomeric Form and in the COP9 Complex, and Their Abundance Is Differentially Affected by the Pleiotropic cop/det/fus Mutations. Plant Cell, 1998, 10, 1779-1790.	6.6	156
66	Molecular Approaches to Biochemical Purification: The COP9 Complex Paradigm. , 1998, , 83-91.		0
67	The COP9 complex: a link between photomorphogenesis and general developmental regulation?. Plant, Cell and Environment, 1997, 20, 734-739.	5.7	15
68	The COP9 Complex, a Novel Multisubunit Nuclear Regulator Involved in Light Control of a Plant Developmental Switch. Cell, 1996, 86, 115-121.	28.9	319
69	Light signaling in plants. Critical Reviews in Plant Sciences, 1996, 15, 455-478.	5.7	41
70	The novel components of the arabidopsis light signaling pathway may define a group of general developmental regulators shared by both animal and plant kingdoms. Cell, 1995, 82, 353-354.	28.9	58
71	Carotenoids in Cyanobacteria. , 1994, , 559-579.		97
72	Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell, 1994, 78, 117-124.	28.9	380

1

#	Article	IF	CITATIONS
73	Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942 Plant Cell, 1994, 6, 1107-1121.	6.6	249
74	Carotenoids in Cyanobacteria. , 1994, , 559-579.		1
75	Cloning and functional expression inEscherichia coliof a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of β-carotene. FEBS Letters, 1993, 328, 130-138.	2.8	105
76	A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4962-4966.	7.1	190
77	Molecular cloning and expression inEscherichia coliof a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Letters, 1992, 296, 305-310.	2.8	93
78	Molecular Characterization of Carotenoid Biosynthesis in Plants: The Phytoene Desaturase Gene in Tomato. , 1992, , 11-18.		4
79	Functional Complementation in Escherichia coli of Different Phytoene Desaturase Genes and Analysis of Accumulated Carotenes. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1991, 46, 1045-1051.	1.4	86
80	The molecular basis of resistance to the herbicide norflurazon. Plant Molecular Biology, 1991, 16, 967-974.	3.9	143
81	Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6532-6536.	7.1	151
82	Cloning a Gene Coding for Norflurazon Resistance in Cyanobacteria. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 482-486.	1.4	45
83	Biochemical characterization of Synechococcus mutants selected against the bleaching herbicide norflurazon. Pesticide Biochemistry and Physiology, 1990, 36, 46-51.	3.6	38

84 The PCI Complexes and the Ubiquitin Proteasome System (UPS) in Plant Development. , 0, , 273-306.