Michael Carl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743420/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eye tracking as an MT evaluation technique. Machine Translation, 2010, 24, 1-13.	1.3	78
2	Gazing and Typing Activities during Translation: A Comparative Study of Translation Units of Professional and Student Translators. Meta, 0, 56, 952-975.	0.3	67
3	Shared representations and the translation process. Translation and Interpreting Studies, 2013, 8, 169-190.	0.7	60
4	Towards a classification of translator profiles based on eye-tracking and keylogging data. Journal of Writing Research, 2013, 5, 133-158.	1.2	58
5	The CRITT Translation Process Research Database. New Frontiers in Translation Studies, 2016, , 13-54.	0.4	40
6	Word Translation Entropy: Evidence of Early Target Language Activation During Reading for Translation. New Frontiers in Translation Studies, 2016, , 183-210.	0.4	37
7	CASMACAT: An Open Source Workbench for Advanced Computer Aided Translation. Prague Bulletin of Mathematical Linguistics, 2013, 100, 101-112.	0.5	31
8	Why Translation Is Difficult: A Corpus-Based Study of Non-Literality in Post-Editing and From-Scratch Translation. Hermes (Denmark), 2017, , 43-57.	0.1	24
9	Towards statistical modelling of translators' activity data. International Journal of Speech Technology, 2009, 12, 125-138.	2.2	21
10	Interactive translation prediction versus conventional post-editing in practice: a study with the CasMaCat workbench. Machine Translation, 2014, 28, 217-235.	1.3	20
11	Syntactic Variance and Priming Effects in Translation. New Frontiers in Translation Studies, 2016, , 211-238.	0.4	16
12	Measuring the Cognitive Effort of Literal Translation Processes. , 2014, , .		16
13	CASMACAT: A Computer-assisted Translation Workbench. , 2014, , .		15
14	The Effectiveness of Consulting External Resources During Translation and Post-editing of General Text Types. New Frontiers in Translation Studies, 2016, , 111-133.	0.4	13
15	Post-editing neural machine translation versus phrase-based machine translation for English–Chinese. Machine Translation, 2019, 33, 9-29.	1.3	13
16	Post-editing machine translation. Benjamins Translation Library, 2015, , 145-174.	0.3	12
17	Towards a Dynamic Linkage of Example-based and Rule-based Machine Translation. Machine Translation, 2000, 15, 223-257.	1.3	10
18	METIS-II: low resource machine translation. Machine Translation, 2008, 22, 67-99.	1.3	9

MICHAEL CARL

#	Article	IF	CITATIONS
19	Recognition of translator expertise using sequences of fixations and keystrokes. , 2014, , .		8
20	A systems theory perspective on the translation process. Translation, Cognition and Behavior, 2019, 2, 211-232.	1.1	8
21	Shallow post morphological processing with KURD. , 1998, , .		8
22	Predicting source gaze fixation duration: A machine learning approach. , 2015, , .		6
23	A Computational Cognitive Model of Human Translation Processes. , 2013, , 110-128.		6
24	The role of syntactic variation in translation and post-editing. Translation Spaces(Netherland), 2015, 4, 119-144.	1.2	5
25	The development of the TPR-DB as Grounded Theory Method. Translation, Cognition and Behavior, 2018, 1, 168-193.	1.1	5
26	Inducing Translation Grammars from Bracketed Alignments. Text, Speech and Language Technology, 2003, , 339-361.	0.2	5
27	ChapterÂ3. Measuring translation literality. Benjamins Translation Library, 0, , 82-106.	0.3	5
28	ChapterÂ6. Recognition and characterization of translator attributes using sequences of fixations and keystrokes. Benjamins Translation Library, 0, , 97-120.	0.3	5
29	General-purpose statistical translation engine and domain specific texts. Terminology, 2004, 10, 131-153.	0.3	4
30	Information and Entropy Measures of Rendered Literal Translation. Machine Translation, 2021, , 113-140.	0.1	4
31	Outline for a Relevance Theoretical Model of Machine Translation Post-editing. New Frontiers in Translation Studies, 2019, , 49-67.	0.4	4
32	A model of competence for corpus-based machine translation. , 2000, , .		3
33	Abducing term variant translations in aligned texts. Terminology, 2004, 10, 101-130.	0.3	3
34	Learning Advanced Post-editing. New Frontiers in Translation Studies, 2016, , 95-110.	0.4	3
35	A Radical Embodied Perspective on the Translation Process. Machine Translation, 2021, , 389-406.	0.1	3
36	Toward a Hybrid Integrated Translation Environment. Lecture Notes in Computer Science, 2002, , 11-20.	1.3	3

MICHAEL CARL

#	Article	IF	CITATIONS
37	A system-theoretical view of EBMT. Machine Translation, 2007, 19, 229-249.	1.3	2
38	Micro Units and the First Translational Response Universal. Machine Translation, 2021, , 233-257.	0.1	2
39	Computational linguistics and translation studies. Benjamins Translation Library, 0, , 225-244.	0.3	2
40	Recent Research in the Field of Example-Based Machine Translation. Lecture Notes in Computer Science, 2001, , 195-196.	1.3	2
41	Predicting translation behaviorsby using Hidden Markov Model. Translation, Cognition and Behavior, 2020, 3, 76-99.	1.1	2
42	Al-Based Syntactic Complexity Metrics and Sight Interpreting Performance. Lecture Notes in Computer Science, 2022, , 534-547.	1.3	2
43	Introduction to special issue on example-based machine translation. Machine Translation, 2007, 19, 193-195.	1.3	1
44	Word-Based Human Edit Rate (WHER) as an Indicator of Post-editing Effort. Machine Translation, 2021, , 39-55.	0.1	1
45	Computation and Representation in Cognitive Translation Studies. Machine Translation, 2021, , 341-355.	0.1	1
46	Combining Invertible Example-Based Machine Translation with Translation Memory Technology. Lecture Notes in Computer Science, 2000, , 127-136.	1.3	1
47	Mutual disambiguation of eye gaze and speech for sight translation and reading. , 2013, , .		0
48	Translation Norms, Translation Behavior, and Continuous Vector Space Models. Machine Translation, 2021, , 357-388.	0.1	0
49	EBMT in a Controlled Environment. Text, Speech and Language Technology, 2003, , 83-114.	0.2	0