List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3743250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Hotter the Engine, the Better. Science, 2009, 326, 1068-1069.	12.6	752
2	Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material. MRS Bulletin, 2003, 28, 639-645.	3.5	341
3	Nucleation in undercooled liquids. Materials Science and Engineering, 1984, 65, 125-135.	0.1	266
4	Rapid Degradation of Azo Dye by Feâ€Based Metallic Glass Powder. Advanced Functional Materials, 2012, 22, 2567-2570.	14.9	259
5	The ag-cu (silver-copper) system. Journal of Phase Equilibria and Diffusion, 1993, 14, 62-75.	0.3	195
6	Application of ternary phase diagrams to the development of MoSi2-based materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 155, 33-44.	5.6	170
7	Intermetallic phase formation during annealing of Al/Ni multilayers. Journal of Applied Physics, 1994, 76, 7850-7859.	2.5	137
8	Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1289-1305.	2.2	129
9	Structural evolution and phase formation in cold-rolled aluminum–nickel multilayers. Acta Materialia, 2001, 49, 1139-1151.	7.9	97
10	The ultrastable kinetic behavior of an Au-based nanoglass. Acta Materialia, 2014, 79, 30-36.	7.9	97
11	Nucleation-controlled reactions and metastable structures. Progress in Materials Science, 2004, 49, 263-284.	32.8	96
12	Aluminum nanoscale order in amorphous Al92Sm8 measured by fluctuation electron microscopy. Applied Physics Letters, 2005, 86, 141910.	3.3	96
13	Strong, Ductile Magnesium-Zinc Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 3038-3045.	2.2	93
14	Nucleation of shear bands in amorphous alloys. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3938-3942.	7.1	93
15	Increasing the kinetic stability of bulk metallic glasses. Acta Materialia, 2016, 104, 25-32.	7.9	86
16	Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. Journal of the European Ceramic Society, 2012, 32, 3875-3883.	5.7	85
17	An ultra-high temperature Mo–Si–B based coating for oxidation protection of NbSS/Nb5Si3 composites. Applied Surface Science, 2015, 337, 38-44.	6.1	83
18	Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys. Jom, 2010, 62, 13-19.	1.9	73

#	Article	IF	CITATIONS
19	Enhance the thermal stability and glass forming ability of Al-based metallic glass by Ca minor-alloying. Intermetallics, 2012, 29, 35-40.	3.9	71
20	Glass formation and primary nanocrystallization in Al-base metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 301, 12-17.	5.6	70
21	Amorphous aluminum alloys—synthesis and stability. Jom, 2002, 54, 34-39.	1.9	70
22	CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction. Journal of Applied Physics, 2000, 87, 3683-3690.	2.5	69
23	Primary crystallization in amorphous Al-based alloys. Journal of Non-Crystalline Solids, 2003, 317, 52-61.	3.1	69
24	Nonequilibrium Solute Capture in Passivating Oxide Films. Physical Review Letters, 2018, 121, 145701.	7.8	67
25	Use of Metastable Phase Diagrams in Rapid Solidification. Materials Research Society Symposia Proceedings, 1982, 19, 223.	0.1	64
26	Amorphous Metallizations for High-Temperature Semiconductor Device Applications. IEEE Transactions on Industrial Electronics, 1982, IE-29, 154-157.	7.9	58
27	Thermodynamic properties and crystallization kinetics of glassâ€forming undercooled liquid Auâ€Pbâ€Sb alloys. Journal of Applied Physics, 1990, 68, 4494-4502.	2.5	58
28	Perspectives on point defect thermodynamics. Physica Status Solidi (B): Basic Research, 2014, 251, 97-129.	1.5	58
29	Nucleation Catalysis in Aluminum Alloy A356 Using Nanoscale Inoculants. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2323-2330.	2.2	56
30	Amorphization and nanostructure synthesis in Al alloys. Intermetallics, 2002, 10, 1079-1088.	3.9	53
31	Oxidation behavior of pack-cemented Si–B oxidation protection coatings for Mo–Si–B alloys at 1300°C. Surface and Coatings Technology, 2015, 266, 57-63.	4.8	52
32	Possible existence of two amorphous phases of <scp>d</scp> -mannitol related by a first-order transition. Journal of Chemical Physics, 2015, 142, 244504.	3.0	51
33	The effect of pressure on phase selection during nucleation in undercooled bismuth. Journal of Applied Physics, 1986, 60, 3489-3494.	2.5	50
34	Dependence of crystal nucleation on prior liquid overheating by differential fast scanning calorimeter. Journal of Chemical Physics, 2014, 140, 104513.	3.0	50
35	Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses. Nanotechnology, 2013, 24, 045610.	2.6	48
36	Mo–Si–B based coating for oxidation protection of SiC–C composites. Surface and Coatings Technology, 2012, 206, 4166-4172.	4.8	47

#	Article	IF	CITATIONS
37	Nucleation-Controlled Solidification Kinetics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 533-547.	2.2	45
38	Oxidation Resistant Coatings for Ultrahigh Temperature Refractory Moâ€Base Alloys. Advanced Engineering Materials, 2009, 11, 892-897.	3.5	45
39	Phase stability and alloying behavior in the Mo-Si-B system. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 507-514.	2.2	42
40	Interdiffusion kinetics in the Mo5SiB2 (T2) phase. Journal of Phase Equilibria and Diffusion, 2006, 27, 605-613.	1.4	42
41	Liquidus temperature determination in multicomponent alloys by thermal analysis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 497-501.	2.2	41
42	Glass formation in a multicomponent Zr-based alloy by mechanical attrition and liquid undercooling. Applied Physics Letters, 1997, 70, 580-582.	3.3	40
43	In Situ Observations of Early Stage Oxidation of Ni-Cr and Ni-Cr-Mo Alloys. Corrosion, 2018, 74, 939-946.	1.1	39
44	High temperature environmental resistant Mo-Si-B based coatings. International Journal of Refractory Metals and Hard Materials, 2018, 71, 246-254.	3.8	36
45	Formation of a metastable ferromagnetic Ï" phase during containerless melt processing and rapid quenching in Mnâ€Al alloys. Journal of Applied Physics, 1992, 71, 676-680.	2.5	35
46	Competition between thermodynamics, kinetics and growth mode in the early-stage oxidation of an equimolar CoCrFeNi alloy. Acta Materialia, 2020, 196, 651-659.	7.9	35
47	A high-resolution transmission electron microscopy study of interfaces between the γ, B2, and α2 phases in a Ti-Al-Mo alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 1623-1634.	2.2	34
48	Solidification of undercooled Sn-Sb peritectic alloys: Part I. Microstructural evolution. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 753-764.	1.4	32
49	Monte Carlo simulation of Nb KÎ \pm secondary fluorescence in EPMA: comparison of PENELOPE simulations with experimental results. Surface and Interface Analysis, 2005, 37, 1012-1016.	1.8	32
50	Environmentally Resistant Mo-Si-B-Based Coatings. Journal of Thermal Spray Technology, 2017, 26, 929-940.	3.1	31
51	Repassivation Behavior of Individual Grain Facets on Dilute Ni–Cr and Ni–Cr–Mo Alloys in Acidified Chloride Solution. Journal of Physical Chemistry C, 2018, 122, 19499-19513.	3.1	31
52	Analysis of solidification microstructures during wedge-casting. Philosophical Magazine, 2006, 86, 3681-3701.	1.6	29
53	Ductile Biodegradable Mgâ€Based Metallic Glasses with Excellent Biocompatibility. Advanced Functional Materials, 2013, 23, 4793-4800.	14.9	29
54	Mapping the Viscoelastic Heterogeneity at the Nanoscale in Metallic Glasses by Static Force Spectroscopy. Nano Letters, 2020, 20, 7558-7565.	9.1	29

#	Article	IF	CITATIONS
55	Flux-induced structural modification and phase transformations in a Pd40Ni40Si4P16 bulk-glassy alloy. Acta Materialia, 2010, 58, 5886-5897.	7.9	28
56	Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics. Physica Status Solidi (B): Basic Research, 2014, 251, 33-52.	1.5	28
57	Nanocalorimetry measurements of metastable states. Thermochimica Acta, 2015, 603, 24-28.	2.7	28
58	Au diffusion in amorphous and polycrystalline Ni0.55Nb0.45. Journal of Applied Physics, 1982, 53, 6186-6190.	2.5	27
59	Undercooling and Nucleation during Solidification ISIJ International, 1995, 35, 580-588.	1.4	25
60	Oxidation resistance of a Mo-W-Si-B alloy at 1000–1300â€ [−] °C: The effect of a multicomponent Mo-Si-B coating. Applied Surface Science, 2019, 470, 289-295.	6.1	24
61	Temperature Dependence of the Dynamic Structure Factor for SupercooledSn1â ^{~,} xPbxAlloys: A Test of Instability Theories for the Liquid-Solid Phase Transition. Physical Review Letters, 1981, 47, 424-427.	7.8	23
62	Annealing response of point defects in off-stoichiometric Mo5SiB2 phase. Intermetallics, 2007, 15, 1268-1276.	3.9	23
63	In situ phase separation and flow behavior in the glass transition region. Intermetallics, 2010, 18, 1235-1239.	3.9	23
64	Synthesis, Thermodynamic Stability and Diffusion Mechanism of Al5Fe2-Based Coatings. Oxidation of Metals, 2014, 81, 167-177.	2.1	23
65	Enhanced Oxidation Resistance of Mo–Si–B–Ti Alloys by Pack Cementation. Oxidation of Metals, 2017, 88, 267-277.	2.1	23
66	Nickel-Titanium Memory Metal: A "Smart" Material Exhibiting a Solid-State Phase Change and Superelasticity. Journal of Chemical Education, 1994, 71, 334.	2.3	22
67	Nanocrystallization Reactions in Amorphous Aluminum Alloys. Materials Transactions, 2003, 44, 1982-1992.	1.2	22
68	Oxidation Resistance Coatings of Mo-Si-B Alloys via a Pack Cementation Process. Metals and Materials International, 2008, 14, 1-7.	3.4	22
69	Extended Functionality of Environmentally-Resistant Mo-Si-B-Based Coatings. Jom, 2013, 65, 307-317.	1.9	22
70	Separating <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi> relaxation from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi></mml:math> relaxation in fragile metallic glasses based on ultrafast flash differential scanning calorimetry.</mml:math 	2.4	22
71	Physical Review Materials, 2020, 4, . Aluminum Pack Cementation on Mo–Si–B Alloys. Journal of the Electrochemical Society, 2007, 154, C692.	2.9	21
72	Amorphization of Zr-Al-Ni-Cu during cold rolling of elemental foils at ambient temperatures. Philosophical Magazine Letters, 1998, 77, 109-115.	1.2	20

#	Article	IF	CITATIONS
73	Suppressing CMAS attack with a MoSiB-based coating. Surface and Coatings Technology, 2014, 239, 138-146.	4.8	20
74	Mechanisms of bulk and surface diffusion in metallic glasses determined from molecular dynamics simulations. Acta Materialia, 2021, 209, 116794.	7.9	20
75	The solidification of aluminum-manganese powders. Journal of Materials Research, 1987, 2, 809-817.	2.6	19
76	Kinetics of heterogeneous nucleation on intrinsic nucleants in pure fcc transition metals. Journal of Physics Condensed Matter, 2009, 21, 464113.	1.8	19
77	Phase Reactions and Processing in the Ti-Al based Intermetallics ISIJ International, 1991, 31, 1080-1087.	1.4	19
78	Microstructure, microhardness and oxidation behavior of Mo-Si-B alloys in the Moss+Mo2B+Mo5SiB2 three phase region. Intermetallics, 2020, 116, 106618.	3.9	18
79	Reactions at amorphous SiC/Ni interfaces. Journal of Applied Physics, 1999, 85, 2636-2641.	2.5	17
80	Solidification of Bcc/T1/T2 three-phase microstructure in Mo–Nb–Si–B alloys. Intermetallics, 2016, 72, 1-8.	3.9	17
81	Undercooling Behavior of Liquid Metals. Materials Research Society Symposia Proceedings, 1981, 8, 49.	0.1	15
82	Solidification of undercooled Sn-Sb peritectic alloys: Part II. Heterogeneous nucleation. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 765-773.	1.4	15
83	The kinetics of indium/amorphous-selenium multilayer thin film reactions. Journal of Materials Research, 1999, 14, 771-779.	2.6	15
84	Mo–Si–B Coating for Improved Oxidation Resistance of Niobium. Advanced Engineering Materials, 2015, 17, 1068-1075.	3.5	14
85	Hot Corrosion of Mo–Si–B Coatings. Oxidation of Metals, 2017, 87, 705-715.	2.1	14
86	Polyamorphism and liquid-liquid transformations in D-mannitol. Journal of Chemical Physics, 2018, 149, 074505.	3.0	14
87	Enhanced oxidation resistance of (Mo95W5)85Ta10(TiZr)5 refractory multi-principal element alloy up to 1300°C. Acta Materialia, 2021, 215, 117114.	7.9	14
88	Evolution of NiO Island Size Distributions during the Oxidation of a Ni–5Cr Alloy: Experiment and Modeling. ACS Applied Materials & Interfaces, 2018, 10, 9136-9146.	8.0	13
89	Vitrification, crystallization, and atomic structure of deformed and quenched Ni60Nb40 metallic glass. Journal of Non-Crystalline Solids, 2018, 491, 133-140.	3.1	13
90	Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. Physical Review Letters, 2022, 128, 075501.	7.8	13

#	Article	IF	CITATIONS
91	Uniformity and interfaces in ion-beam deposited Al/Ni multilayers. Journal of Materials Research, 1997, 12, 385-391.	2.6	12
92	Nucleation–catalysis–kinetics analysis under dynamic conditions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2003, 361, 447-461.	3.4	12
93	Interface reaction between Ni and amorphous SiC. Journal of Electronic Materials, 2004, 33, 1064-1070.	2.2	12
94	Primary crystallization reactions in Al-based metallic glass alloys. Journal of Alloys and Compounds, 2010, 504, S222-S225.	5.5	12
95	Kinetic transition in the growth of Al nanocrystals in Al-Sm alloys. Journal of Applied Physics, 2012, 111, 063525.	2.5	12
96	Flash DSC determination of the delay time for primary crystallization and minor alloying effect in marginal Al-based metallic glasses. Thermochimica Acta, 2019, 677, 91-98.	2.7	12
97	Examination of B in the Mo solid solution (Moss) in Moss + Mo5SiB2 + Mo2B alloys. Scripta Materialia, 2019, 163, 62-65.	5.2	12
98	Trimodal shear band nucleation distribution in a Gd-based metallic glass via nanoindentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140402.	5.6	12
99	Long-term climate changes from crystal growth. Nature, 1988, 332, 592-593.	27.8	11
100	Titanium-Aluminide Alloys Between the Compositions Ti ₃ Al and TiAl. Materials Research Society Symposia Proceedings, 1988, 133, 57.	0.1	11
101	Internal Nucleation of Highly Undercooled Magnesium Metasilicate Melts. Journal of the American Ceramic Society, 1991, 74, 1312-1319.	3.8	11
102	Deformation alloying and transformation reactions. Journal of Alloys and Compounds, 2009, 483, 14-19.	5.5	11
103	Nanostructure development during devitrification and deformation. Journal of Alloys and Compounds, 2010, 495, 360-364.	5.5	11
104	Superheating of Metallic Crystals. Materials Research Society Symposia Proceedings, 1985, 57, 67.	0.1	10
105	Phase selection during pulsed laser annealing of manganese. Applied Physics Letters, 1986, 48, 338-340.	3.3	10
106	Significance of the Heat of Mixing for the Amorphization of Multilayers by Deformation Processing. Materials Science Forum, 2002, 386-388, 21-26.	0.3	10
107	Approaches to quantification of microstructure for model lipid systems. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 389-399.	1.9	10
108	Practical application of diffusion pathway analysis for SiC-metal reactions. Metals and Materials International, 2006, 12, 231-238.	3.4	10

#	Article	IF	CITATIONS
109	Oxidation Performance of High Temperature Mo-Si-B Alloys and Coatings. Materials Science Forum, 0, 595-598, 1065-1074.	0.3	10
110	Environmental Resistance of Mo–Si–B Alloys and Coatings. Oxidation of Metals, 2013, 80, 207-218.	2.1	10
111	Focus: Nucleation kinetics of shear bands in metallic glass. Journal of Chemical Physics, 2016, 145, 211803.	3.0	10
112	Interdiffusion in the Ni-Re System: Evaluation of Uncertainties. Journal of Phase Equilibria and Diffusion, 2017, 38, 750-763.	1.4	10
113	Alâ€Based Amorphous Metallic Plastics. Advanced Engineering Materials, 2019, 21, 1800930.	3.5	10
114	Defect recovery processes in Cr-B binary and Cr-Al-B MAB phases: structure-dependent radiation tolerance. Acta Materialia, 2022, 235, 118099.	7.9	10
115	Nanometer-scale solute clustering in aluminum–nickel–ytterbium metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 353, 99-104.	5.6	9
116	WO2 triggered nucleation and growth of ultra-long W18O49 structures, from nanobundles to single-crystalline microrod. Acta Materialia, 2018, 148, 55-62.	7.9	9
117	Surface dynamics measurement on a gold based metallic glass. Applied Physics Letters, 2020, 116, .	3.3	9
118	Electromigration studies in amorphous and polycrystalline alloys. Applied Physics Letters, 1988, 53, 102-103.	3.3	8
119	Phase Stability of MoSi2 with Cr Additions. Materials Research Society Symposia Proceedings, 1992, 288, 159.	0.1	8
120	Elastic and inelastic mean free paths of 200 keV electrons in metallic glasses. Ultramicroscopy, 2016, 171, 89-95.	1.9	8
121	Mechanical properties and dislocation character of YB4 and YB6. Intermetallics, 2017, 89, 86-91.	3.9	8
122	Crystallographic anisotropy of nonequilibrium solute capture. Acta Materialia, 2020, 198, 223-229.	7.9	8
123	Chapter 1 Principles underlying coatings and surface modification science. Materials Science and Engineering, 1985, 70, 9-22.	0.1	7
124	Containerless Processing of Undercooled Melts. Materials Research Society Symposia Proceedings, 1986, 87, 17.	0.1	7
125	Medium-Range Order in High Al-content Amorphous Alloys Measured by Fluctuation Electron Microscopy. Microscopy and Microanalysis, 2004, 10, 788-789.	0.4	7
126	Application of Plasma Spraying as a Precursor in the Synthesis of Oxidation-Resistant Coatings. Journal of Thermal Spray Technology, 2013, 22, 992-1001.	3.1	7

#	Article	IF	CITATIONS
127	Investigation of the nucleation delay time in Al-based metallic glasses by high rate calorimetry. Journal of Non-Crystalline Solids, 2018, 502, 9-14.	3.1	7
128	Microstructural Evaluation and Highly Efficient Photocatalytic Degradation Characteristic of Nanostructured Mg65Ni20Y15ⰒxLax (X = 1, 2, 3) Alloys. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 494-503.	3.7	7
129	Mo-Silicide Alloys for High-Temperature Structural Applications. Materials Performance and Characterization, 2021, 10, 20200183.	0.3	7
130	Solidification of Undercooled Monotectic Alloys. Materials Research Society Symposia Proceedings, 1981, 9, 491.	0.1	6
131	Phase Selection in Undercooled Liquids of Pulsed-Laser Melted Alloys. Materials Research Society Symposia Proceedings, 1988, 100, 573.	0.1	6
132	Solidification Processing of NbCr2 Alloys. Materials Research Society Symposia Proceedings, 1990, 194, 105.	0.1	6
133	Crystallography of Bcc/T ₁ /T ₂ Three-Phase Microstructure in the Directionally Solidified Mo-Nb-Si-B Alloy. Materials Research Society Symposia Proceedings, 2015, 1760, 133.	0.1	6
134	Interfacial mixing of nickel vanadium multilayers induced by cold rolling. Acta Materialia, 2015, 87, 68-77.	7.9	6
135	Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy. Scientific Reports, 2018, 8, 10239.	3.3	6
136	Reactive modeling of Mo3Si oxidation and resulting silica morphology. Acta Materialia, 2020, 187, 93-102.	7.9	6
137	Phase Stability and Solidification Pathways in MoSi ₂ Based Alloys. Materials Research Society Symposia Proceedings, 1990, 213, 169.	0.1	5
138	Microstructural Development of Mo(ss) + T2 Two-Phase Alloys. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	5
139	Interface reactions and reaction synthesis of a high temperature composite system. Metals and Materials International, 2007, 13, 1-12.	3.4	5
140	Nucleation reactions during deformation and crystallization of metallic glass. Journal of Alloys and Compounds, 2012, 536, S55-S59.	5.5	5
141	Environmental Resistant Coatings for High Temperature Mo and Nb Silicide Alloys. MRS Advances, 2017, 2, 1323-1334.	0.9	5
142	Creep of an oxidation resistant coated Mo-9Si-8B alloy. Intermetallics, 2020, 120, 106743.	3.9	5
143	Nanoglass and Nanocrystallization Reactions in Metallic Glasses. Frontiers in Materials, 2021, 8,	2.4	5
144	Molecular simulation-derived features for machine learning predictions of metal glass forming ability. Computational Materials Science, 2021, 199, 110728.	3.0	5

#	Article	IF	CITATIONS
145	Oxidation kinetics and microstructure evolution of high Mn stainless-steel alloy in CO2 at 700°C. Corrosion Science, 2022, 195, 110013.	6.6	5
146	Direct formation of the AlNi3 phase in Al-75Ni cold rolled multilayers. Journal of Materials Science Letters, 1999, 18, 1449-1451.	0.5	4
147	Phase stability of the intermetallic L21 Heusler alloys of A2(Hf1â^'xZrx)Al (where A=Pd and Pt) for an Nb-based high-temperature materials design. Applied Physics Letters, 2005, 87, 261908.	3.3	4
148	Mixing behaviors in Cu/Ni and Ni/V multilayers induced by cold rolling. Journal of Alloys and Compounds, 2015, 643, S246-S249.	5.5	4
149	Analysis of Melt Undercooling and Crystallization Kinetics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4898-4907.	2.2	4
150	Resistance of a Mo–Si–B-Based Coating to Environmental Salt-Based Hot Corrosion. Oxidation of Metals, 2020, 93, 387-399.	2.1	4
151	In-Situ TEM Phase Formation in Cold Rolled Aluminum-Nickel Multilayers. Materials Research Society Symposia Proceedings, 1997, 481, 539.	0.1	3
152	Continuous Amorphization of Zr-Based Alloys by Controlled Mechanical Intermixing. Materials Research Society Symposia Proceedings, 1998, 554, 173.	0.1	3
153	Low-Temperature, Mercury-Mediated Synthesis of Aluminum Intermetallics. Chemistry of Materials, 2000, 12, 2008-2013.	6.7	3
154	Solidification of Atomized Liquid Droplets. Advanced Engineering Materials, 2002, 4, 147.	3.5	3
155	Deformation Behavior of a Quaternary Mo-Nb-Si-B Alloy. Materials Research Society Symposia Proceedings, 2011, 1295, 355.	0.1	3
156	Deformation-induced nanoscale mixing reactions in Cu/Ni and Ag/Pd multilayers. Applied Physics Letters, 2013, 103, 191904.	3.3	3
157	Intermixing in Cu/Ni multilayers induced by cold rolling. Journal of Applied Physics, 2015, 117, 165902.	2.5	3
158	Deformation-driven catalysis of nanocrystallization in amorphous Al alloys. Beilstein Journal of Nanotechnology, 2016, 7, 1428-1433.	2.8	3
159	Direct observation of incommensurate structure in Mo ₃ Si. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, 660-666.	0.1	3
160	Synthesis of Sm–Al metallic glasses designed by molecular dynamics simulations. Journal of Materials Science, 2018, 53, 11488-11499.	3.7	3
161	Solidification of Ni-Re Peritectic Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 772-788.	2.2	3
162	Coating Reactions on Vanadium and V-Si-B Alloys during Powder Pack-Cementation. Materials, 2020, 13, 4099.	2.9	3

#	Article	IF	CITATIONS
163	Varying kinetic stability, icosahedral ordering, and mechanical properties of a model Zr-Cu-Al metallic glass by sputtering. Physical Review Materials, 2021, 5, .	2.4	3
164	Oxidation of Mo-Si-B Alloys and Coatings in a Water Vapor Environment. Oxidation of Metals, 2021, 96, 323-332.	2.1	3
165	Interfacial Reactions Between Amorphous W-Si Thin Films And Polycrystalline Overlayers. Materials Research Society Symposia Proceedings, 1985, 54, 127.	0.1	2
166	Decomposition Reactions and Toughening in NiAl-Cu Alloys. Materials Research Society Symposia Proceedings, 1990, 194, 405.	0.1	2
167	Columnar microstructure and stress measurements in amorphous W0.75Si0.25 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1990, 8, 885-890.	2.1	2
168	Kinetic Competition During Duplex Partitionless Solidification in Ni-V Alloys. Materials Research Society Symposia Proceedings, 1995, 398, 57.	0.1	2
169	Equilibrium Thermodynamics Near the Glass Transition - The Conceptual Application of the Limiting Fictive Temperature. Materials Research Society Symposia Proceedings, 1998, 554, 217.	0.1	2
170	Deformation-induced crystallization and amorphization of Al-based metallic glasses. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	2
171	Solid State Amorphization by Cold-Rolling. , 2006, , 1-9.		2
172	Intermetallic Phase Formation in Bulk Multilayered Structures. , 2006, , 324-329.		2
173	Oxidation Response and Coatings for Mo-Si-B Alloys. Materials Research Society Symposia Proceedings, 2011, 1295, 343.	0.1	2
174	Grain Refinement during Melt-spinning of Dilute Cu-base and N i-base Alloys ISIJ International, 1997, 37, 668-676.	1.4	2
175	Liquid–liquid transition kinetics in D-mannitol. Journal of Chemical Physics, 2022, 157, .	3.0	2
176	Kinetic Competition in Undercooled Liquid Alloys. Materials Research Society Symposia Proceedings, 1995, 398, 3.	0.1	1
177	Investigation Of Phase Formation During Cold Rolling Of Elemental Zr-Al-Ni-Cu Foils With Bulk Glass Forming Composition. Materials Research Society Symposia Proceedings, 1997, 481, 427.	0.1	1
178	Strategies for designing composite materials for high temperature application. Metals and Materials International, 1999, 5, 539-544.	0.2	1
179	Diffusion Pathway of Interface Reactions in Amorphous-SiC/Ni. Materials Research Society Symposia Proceedings, 1999, 580, 75.	0.1	1
180	Glass Formation and Nanostructure Development in Al-Based Alloys. Materials Research Society Symposia Proceedings, 1999, 581, 101.	0.1	1

#	Article	IF	CITATIONS
181	Synthesis and Stability of Amorphous Al Alloys. Materials Research Society Symposia Proceedings, 2000, 644, 471.	0.1	1
182	Growth of The Mo5SiB2 Phase in A Mo5Si3/Mo2B Diffusion Couple. Materials Research Society Symposia Proceedings, 2000, 646, 74.	0.1	1
183	Transition Metal Alloying and Phase Stability in the Mo-Si-B System. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	1
184	Microstructure Development in High-Temperature Mo-Si-B Alloys. Materials Research Society Symposia Proceedings, 2004, 851, 93.	0.1	1
185	Nanostructured Materials:Reaction Kinetics and Stability. Lecture Notes in Physics, 2005, , 221-249.	0.7	1
186	Crystallization control in highly undercooled liquids and glasses. International Journal of Materials Research, 2012, 103, 1083-1089.	0.3	1
187	Stable and Metastable Equilibria in the Pb-Cd System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3004-3013.	2.2	1
188	Catalytic Effect of Nanoparticles on Primary and Secondary Phase Nucleation. Materials Science Forum, 0, 765, 250-254.	0.3	1
189	Kinetic Studies of Melting, Crystallization, and Glass Formation. , 2016, , 633-660.		1
190	Metals and Alloys. Handbook of Thermal Analysis and Calorimetry, 2018, 6, 781-828.	1.6	1
191	Pulsed Laser-Induced Melting of Intermediate Cu-Zn Phases. Materials Research Society Symposia Proceedings, 1989, 157, 389.	0.1	Ο
192	Nanocrystalline Solid Solutions of Cu/Co and Other Novel Nanomaterials. Materials Research Society Symposia Proceedings, 1996, 457, 261.	0.1	0
193	Significance of the Heat of Mixing for the Amorphization of Multilayers by Deformation Processing. Journal of Metastable and Nanocrystalline Materials, 2002, 13, 21-26.	0.1	0
194	Nucleation of (Mo) Precipitates on Dislocations During Annealing of a Mo-rich Mo5SiB2 Phase. Materials Research Society Symposia Proceedings, 2004, 842, 321.	0.1	0
195	The Effect of As-quenched Structure on Primary Phase Crystallization in Amorphous Aluminum Alloys. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	0
196	Nucleation Kinetics Analysis by Repeated Solidification of Single-Droplets. , 2006, , 85-91.		0
197	Analysis of Nucleation and Glass Formation by Chip Calorimetry. Applied Sciences (Switzerland), 2021, 11, 7652.	2.5	0
198	A pulse oxidation facility for the study of oxide nucleation behavior. Review of Scientific Instruments, 2021, 92, 093902.	1.3	0

#	Article	IF	CITATIONS
199	The undercooling of aluminum. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 18, 1143-1150.	1.4	0
200	Solidification of Ni-Re Peritectic Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, .	2.2	0
201	Alloying reactions in nanostructured multilayers during intense deformation. International Journal of Materials Research, 2022, 94, 1111-1116.	0.3	0