F Susan Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3742399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immunity in latent autoimmune diabetes in adults. Diabetes/Metabolism Research and Reviews, 2022, 38, e3480.	4.0	7
2	Incidence of diabetic retinopathy in newly diagnosed subjects with type 2 diabetes mellitus over 5Âyears: Contribution of Î'-cell function. Journal of Diabetes and Its Complications, 2022, 36, 108028.	2.3	3
3	Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes. Diabetologia, 2022, 65, 343-355.	6.3	9
4	Safety of the use of gold nanoparticles conjugated with proinsulin peptide and administered by hollow microneedles as an immunotherapy in type 1 diabetes. Immunotherapy Advances, 2022, 2, .	3.0	12
5	Editorial: Immunopathology of Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 852963.	4.8	0
6	Obesity aggravates contact hypersensitivity reaction in mice. Contact Dermatitis, 2022, 87, 28-39.	1.4	3
7	IgM-associated gut bacteria in obesity and type 2 diabetes in C57BL/6 mice and humans. Diabetologia, 2022, 65, 1398-1411.	6.3	4
8	TLR9 Deficiency in B Cells Promotes Immune Tolerance via Interleukin-10 in a Type 1 Diabetes Mouse Model. Diabetes, 2021, 70, 504-515.	0.6	8
9	Differentiating MHC-Dependent and -Independent Mechanisms of Lymph Node Stromal Cell Regulation of Proinsulin-Specific CD8+ T Cells in Type 1 Diabetes. Diabetes, 2021, 70, 529-537.	0.6	0
10	Using gold nanoparticles for enhanced intradermal delivery of poorly soluble auto-antigenic peptides. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102321.	3.3	14
11	Regulatory B Cells in Type 1 Diabetes. Methods in Molecular Biology, 2021, 2270, 419-435.	0.9	1
12	Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cellular and Molecular Immunology, 2021, 18, 328-338.	10.5	13
13	Identifying the â€~Achilles heel' of type 1 diabetes. Clinical and Experimental Immunology, 2021, 204, 167-178.	2.6	3
14	Natural Protection From Type 1 Diabetes in NOD Mice Is Characterized by a Unique Pancreatic Islet Phenotype. Diabetes, 2021, 70, 955-965.	0.6	3
15	Historical and new insights into pathogenesis of type 1 diabetes (2). Clinical and Experimental Immunology, 2021, 204, 165-166.	2.6	1
16	Referral rates of patients with diabetes to secondary care are inversely related to the prevalence of diabetes in each primary care practice and confidence in treatment, not to HbA1c level. Primary Care Diabetes, 2021, 15, 513-517.	1.8	0
17	Inflammasomes and Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 686956.	4.8	7
18	IL-10 Deficiency Accelerates Type 1 Diabetes Development via Modulation of Innate and Adaptive Immune Cells and Gut Microbiota in BDC2.5 NOD Mice. Frontiers in Immunology, 2021, 12, 702955.	4.8	13

#	Article	IF	CITATIONS
19	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	3.5	10
20	Regulatory B Cells: Role in Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 746187.	4.8	11
21	Environmental Determinants of Type 1 Diabetes: From Association to Proving Causality. Frontiers in Immunology, 2021, 12, 737964.	4.8	33
22	Artemether and aspterric acid induce pancreatic alpha cells to transdifferentiate into beta cells in zebrafish. British Journal of Pharmacology, 2021, , .	5.4	7
23	Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells. Cellular and Molecular Immunology, 2020, 17, 843-855.	10.5	56
24	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	4.4	26
25	Insulin-Reactive T Cells Convert Diabetogenic Insulin-Reactive VH125 B Cells Into Tolerogenic Cells by Reducing Germinal Center T:B Cell Interactions in NOD Mice. Frontiers in Immunology, 2020, 11, 585886.	4.8	1
26	Altered Systemic and Intestinal IgA Immune Responses in Individuals With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4616-e4625.	3.6	5
27	Slow progressors to type 1 diabetes lose islet autoantibodies over time, have few islet antigen-specific CD8+ T cells and exhibit a distinct CD95hi B cell phenotype. Diabetologia, 2020, 63, 1174-1185.	6.3	18
28	Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. Journal of Controlled Release, 2020, 322, 593-601.	9.9	21
29	A predictive CD8+ T cell phenotype for T1DM progression. Nature Reviews Endocrinology, 2020, 16, 198-199.	9.6	7
30	Mouse Models of Autoimmune Diabetes: The Nonobese Diabetic (NOD) Mouse. Methods in Molecular Biology, 2020, 2128, 87-92.	0.9	20
31	Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight, 2020, 5, .	5.0	53
32	Assessing Immune Responses in the Nonobese Diabetic Mouse Model of Type 1 Diabetes. Methods in Molecular Biology, 2020, 2128, 269-289.	0.9	1
33	Phenotypically distinct anti-insulin B cells repopulate pancreatic islets after anti-CD20 treatment in NOD mice. Diabetologia, 2019, 62, 2052-2065.	6.3	14
34	Detecting autoreactive B cells in the peripheral blood of people with type 1 diabetes using ELISpot. Journal of Immunological Methods, 2019, 471, 61-65.	1.4	6
35	Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy. International Journal of Pharmaceutics, 2019, 562, 303-312.	5.2	44
36	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.6	28

F Susan Wong

#	Article	IF	CITATIONS
37	Historical and new insights into pathogenesis of type 1 diabetes. Clinical and Experimental Immunology, 2019, 198, 292-293.	2.6	2
38	Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Frontiers in Immunology, 2019, 10, 2654.	4.8	35
39	B cell depletion reduces T cell activation in pancreatic islets in a murine autoimmune diabetes model. Diabetologia, 2018, 61, 1397-1410.	6.3	18
40	Characteristics of slow progression to diabetes in multiple islet autoantibody-positive individuals from five longitudinal cohorts: the SNAIL study. Diabetologia, 2018, 61, 1484-1490.	6.3	32
41	Combinatorial detection of autoreactive CD8+ T cells with HLA-A2 multimers: a multi-centre study by the Immunology of Diabetes Society T Cell Workshop. Diabetologia, 2018, 61, 658-670.	6.3	22
42	Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Scientific Reports, 2018, 8, 15451.	3.3	59
43	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	3.3	11
44	TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. Journal of Autoimmunity, 2018, 93, 57-65.	6.5	58
45	Regulation of contact sensitivity in nonâ€obese diabetic (NOD) mice by innate immunity. Contact Dermatitis, 2018, 79, 197-207.	1.4	2
46	Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia, 2018, 61, 2333-2343.	6.3	24
47	Loss of CXCR3 expression on memory B cells in individuals with long-standing type 1 diabetes. Diabetologia, 2018, 61, 1794-1803.	6.3	12
48	Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCI Insight, 2018, 3, .	5.0	9
49	Adoptive Transfer of mRNA-Transfected T Cells Redirected against Diabetogenic CD8ÂT Cells Can Prevent Diabetes. Molecular Therapy, 2017, 25, 456-464.	8.2	36
50	Antiâ€ <scp>CD</scp> 3 treatment upâ€regulates programmed cell death proteinâ€1 expression on activated effector T cells and severely impairs their inflammatory capacity. Immunology, 2017, 151, 248-260.	4.4	29
51	Formulation of hydrophobic peptides for skin delivery via coated microneedles. Journal of Controlled Release, 2017, 265, 2-13.	9.9	63
52	Hydrodynamic gene delivery in human skin using a hollow microneedle device. Journal of Controlled Release, 2017, 265, 120-131.	9.9	50
53	Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacological Research, 2017, 119, 219-226.	7.1	44
54	Dietary short-chain fatty acids protect against type 1 diabetes. Nature Immunology, 2017, 18, 484-486.	14.5	45

#	Article	IF	CITATIONS
55	APCâ€ŧargeted proinsulin expression inactivates insulinâ€specific memory CD8 + T cells in NOD mice. Immunology and Cell Biology, 2017, 95, 765-774.	2.3	2
56	Nucleotide-binding oligomerization domain-containing protein 2 (Nod2) modulates T1DM susceptibility by gut microbiota. Journal of Autoimmunity, 2017, 82, 85-95.	6.5	36
57	Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes. Science Translational Medicine, 2017, 9, .	12.4	151
58	Hyperglycaemia does not affect antigen-specific activation and cytolytic killing by CD8+ T cells <i>in vivo</i> . Bioscience Reports, 2017, 37, .	2.4	11
59	Antigen presenting cellâ€targeted proinsulin expression converts insulinâ€specific CD8 + Tâ€cell priming to tolerance in autoimmuneâ€prone NOD mice. European Journal of Immunology, 2017, 47, 1550-1561.	2.9	4
60	Proinsulin Expression Shapes the TCR Repertoire but Fails to Control the Development of Low-Avidity Insulin-Reactive CD8+T Cells. Diabetes, 2016, 65, 1679-1689.	0.6	9
61	The Gut Microbiome in the NOD Mouse. Methods in Molecular Biology, 2016, 1433, 169-177.	0.9	3
62	Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. Journal of Autoimmunity, 2016, 72, 47-56.	6.5	57
63	Peripheral Proinsulin Expression Controls Low-Avidity Proinsulin-Reactive CD8 T Cells in Type 1 Diabetes. Diabetes, 2016, 65, 3429-3439.	0.6	19
64	Beta cell function and ongoing autoimmunity in long-standing, childhood onset type 1 diabetes. Diabetologia, 2016, 59, 2722-2726.	6.3	37
65	Immune and Pancreatic β Cell Interactions in Type 1 Diabetes. Trends in Endocrinology and Metabolism, 2016, 27, 856-867.	7.1	60
66	Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice. Journal of Experimental Medicine, 2016, 213, 2129-2146.	8.5	131
67	Targeted suppression of autoreactive CD8+ T-cell activation using blocking anti-CD8 antibodies. Scientific Reports, 2016, 6, 35332.	3.3	27
68	The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. Journal of Autoimmunity, 2016, 71, 26-34.	6.5	60
69	Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes. Journal of Controlled Release, 2016, 223, 178-187.	9.9	32
70	The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes. Journal of Autoimmunity, 2016, 66, 76-88.	6.5	227
71	Inhibition of Phosphoinositide 3-Kinase p110delta Does Not Affect T Cell Driven Development of Type 1 Diabetes Despite Significant Effects on Cytokine Production. PLoS ONE, 2016, 11, e0146516.	2.5	4
72	Tracking Immunological Responses of Islet Antigen-Specific T Cells in the Nonobese Diabetic (NOD) Mouse Model of Type 1 Diabetes. Methods in Molecular Biology, 2015, 1433, 127-134.	0.9	2

#	Article	IF	CITATIONS
73	Topical steroid therapy induces proâ€tolerogenic changes in Langerhans cells in human skin. Immunology, 2015, 146, 411-422.	4.4	18
74	The gut microbiota and Type 1 Diabetes. Clinical Immunology, 2015, 159, 143-153.	3.2	142
75	Materno-Fetal Transfer of Preproinsulin Through the Neonatal Fc Receptor Prevents Autoimmune Diabetes. Diabetes, 2015, 64, 3532-3542.	0.6	24
76	Fine-Needle Aspiration Biopsy of the Lymph Node: A Novel Tool for the Monitoring of Immune Responses after Skin Antigen Delivery. Journal of Immunology, 2015, 195, 386-392.	0.8	18
77	Identification of Islet Antigen-Specific CD8 T Cells Using MHCI-Peptide Tetramer Reagents in the Non Obese Diabetic (NOD) Mouse Model of Type 1 Diabetes. Methods in Molecular Biology, 2015, 1433, 119-125.	0.9	3
78	Adoptive Transfer of Autoimmune Diabetes Using Immunodeficient Nonobese Diabetic (NOD) Mice. Methods in Molecular Biology, 2015, 1433, 135-140.	0.9	2
79	A reproducible method for the expansion of mouse CD8 + T lymphocytes. Journal of Immunological Methods, 2015, 417, 134-138.	1.4	22
80	The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 55-65.	5.7	207
81	Distortion of the Major Histocompatibility Complex Class I Binding Groove to Accommodate an Insulin-derived 10-Mer Peptide. Journal of Biological Chemistry, 2015, 290, 18924-18933.	3.4	28
82	Type 1 diabetes and gut microbiota: Friend or foe?. Pharmacological Research, 2015, 98, 9-15.	7.1	48
83	Maternal Antibiotic Treatment Protects Offspring from Diabetes Development in Nonobese Diabetic Mice by Generation of Tolerogenic APCs. Journal of Immunology, 2015, 195, 4176-4184.	0.8	89
84	NLRP3 deficiency protects from type 1 diabetes through the regulation of chemotaxis into the pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11318-11323.	7.1	109
85	IRAK-M Deficiency Promotes the Development of Type 1 Diabetes in NOD Mice. Diabetes, 2014, 63, 2761-2775.	0.6	22
86	Selective immunotargeting of diabetogenic <scp>CD</scp> 4 T cells by genetically redirected T cells. Immunology, 2014, 143, 609-617.	4.4	5
87	How Does B-Cell Tolerance Contribute to the Protective Effects of Diabetes Following Induced Mixed Chimerism in Autoimmune Diabetes?. Diabetes, 2014, 63, 1855-1857.	0.6	1
88	Long term effect of gut microbiota transfer on diabetes development. Journal of Autoimmunity, 2014, 53, 85-94.	6.5	143
89	Hepatitis mouse models: from acuteâ€toâ€chronic autoimmune hepatitis. International Journal of Experimental Pathology, 2014, 95, 309-320	1.3	22
90	Endoplasmic Reticulum Targeting Alters Regulation of Expression and Antigen Presentation of Proinsulin. Journal of Immunology, 2014, 192, 4957-4966.	0.8	9

#	Article	IF	CITATIONS
91	Combination Treatment With Anti-CD20 and Oral Anti-CD3 Prevents and Reverses Autoimmune Diabetes. Diabetes, 2013, 62, 2849-2858.	0.6	43
92	Immunotherapy for T1DM—targeting innate immunity. Nature Reviews Endocrinology, 2013, 9, 384-385.	9.6	7
93	TLR9 Deficiency Promotes CD73 Expression in T Cells and Diabetes Protection in Nonobese Diabetic Mice. Journal of Immunology, 2013, 191, 2926-2937.	0.8	41
94	Protection of Islet Grafts Through Transforming Growth Factor-β–Induced Tolerogenic Dendritic Cells. Diabetes, 2013, 62, 3132-3142.	0.6	48
95	The Dual Effects of B Cell Depletion on Antigen-Specific T Cells in BDC2.5NOD Mice. Journal of Immunology, 2012, 188, 4747-4758.	0.8	24
96	TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H732-H742.	3.2	80
97	The Role of Gr1+ Cells after Anti-CD20 Treatment in Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2012, 188, 294-301.	0.8	32
98	Correction: The Role of Gr1+ Cells after Anti-CD20 Treatment in Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2012, 188, 3552-3552.	0.8	0
99	Type 1 Diabetes Therapy Beyond T Cell Targeting: Monocytes, B Cells, and Innate Lymphocytes. Review of Diabetic Studies, 2012, 9, 289-304.	1.3	3
100	T Cells Recognizing a Peptide Contaminant Undetectable by Mass Spectrometry. PLoS ONE, 2011, 6, e28866.	2.5	5
101	IL-10-conditioned dendritic cells prevent autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clinical Immunology, 2011, 139, 336-349.	3.2	60
102	An increased frequency of NK cell receptor and HLA-C group 1 combinations in early-onset type 1 diabetes. Diabetologia, 2011, 54, 3062-3070.	6.3	26
103	Immunology of Diabetes Society Tâ€Cell Workshop: HLA class I tetramerâ€directed epitope validation initiative Tâ€Cell Workshop Report—HLA Class I Tetramer Validation Initiative. Diabetes/Metabolism Research and Reviews, 2011, 27, 720-726.	4.0	25
104	Stimulating IL-13 Receptors on T cells: A New Pathway for Tolerance Induction in Diabetes?Â. Diabetes, 2011, 60, 1657-1659.	0.6	3
105	IFN-γ and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia, 2010, 53, 1451-1460.	6.3	53
106	To B or not to B—pathogenic and regulatory B cells in autoimmune diabetes. Current Opinion in Immunology, 2010, 22, 723-731.	5.5	11
107	Therapeutic Targeting of Syk in Autoimmune Diabetes. Journal of Immunology, 2010, 185, 1532-1543.	0.8	64
108	Immunotargeting of insulin reactive CD8 T cells to prevent Diabetes. Journal of Autoimmunity, 2010, 35, 390-397.	6.5	20

#	Article	IF	CITATIONS
109	Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society. Clinical and Experimental Immunology, 2010, 163, 33-49.	2.6	213
110	Activation of Insulin-Reactive CD8 T-Cells for Development of Autoimmune Diabetes. Diabetes, 2009, 58, 1156-1164.	0.6	67
111	Proinsulin peptide immunotherapy in type 1 diabetes: report of a first-in-man Phase I safety study. Clinical and Experimental Immunology, 2009, 155, 156-165.	2.6	143
112	Functional inhibition related to structure of a highly potent insulinâ€specific CD8 T cell clone using altered peptide ligands. European Journal of Immunology, 2008, 38, 240-249.	2.9	7
113	IFNâ€Î± Can Both Protect against and Promote the Development of Type 1 Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 187-189.	3.8	16
114	Anti D20 Treatment Prolongs Syngeneic Islet Graft Survival and Delays the Onset of Recurrent Autoimmune Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 217-219.	3.8	8
115	The Role of Tollâ€Like Receptors 3 and 9 in the Development of Autoimmune Diabetes in NOD Mice. Annals of the New York Academy of Sciences, 2008, 1150, 146-148.	3.8	76
116	Developing a Novel Model System to Target Insulinâ€Reactive CD8 T Cells. Annals of the New York Academy of Sciences, 2008, 1150, 54-58.	3.8	5
117	Tollâ€Like Receptors and Diabetes. Annals of the New York Academy of Sciences, 2008, 1150, 123-132.	3.8	45
118	Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 2008, 455, 1109-1113.	27.8	1,745
119	Regulatory T cells in autoimmune endocrine diseases. Trends in Endocrinology and Metabolism, 2008, 19, 292-299.	7.1	8
120	B-Cells Promote Intra-Islet CD8+ Cytotoxic T-Cell Survival to Enhance Type 1 Diabetes. Diabetes, 2008, 57, 909-917.	0.6	56
121	CD8+ T-cells and their interaction with other cells in damage to islet β-cells. Biochemical Society Transactions, 2008, 36, 316-320.	3.4	8
122	Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. Journal of Clinical Investigation, 2007, 117, 3857-3867.	8.2	369
123	Targeted expression of the anti-apoptotic gene CrmA to NOD pancreatic islets protects from autoimmune diabetes. Journal of Autoimmunity, 2006, 26, 7-15.	6.5	11
124	Inhibition of Membrane Type-1 Matrix Metalloproteinase by Cancer Drugs Interferes with the Homing of Diabetogenic T Cells into the Pancreas. Journal of Biological Chemistry, 2005, 280, 27755-27758.	3.4	33
125	The Influence of the Major Histocompatibility Complex on Development of Autoimmune Diabetes in RIP-B7.1 Mice. Diabetes, 2005, 54, 2032-2040.	0.6	8
126	Insulin – a primary autoantigen in type 1 diabetes?. Trends in Molecular Medicine, 2005, 11, 445-448.	6.7	11

#	Article	IF	CITATIONS
127	B Cells in Autoimmune Diabetes. Review of Diabetic Studies, 2005, 2, 121-121.	1.3	39
128	Investigation of the Role of B-Cells in Type 1 Diabetes in the NOD Mouse. Diabetes, 2004, 53, 2581-2587.	0.6	176
129	The Effect of Innate Immunity on Autoimmune Diabetes and the Expression of Toll-Like Receptors on Pancreatic Islets. Journal of Immunology, 2004, 172, 3173-3180.	0.8	127
130	What can the HLA transgenic mouse tell us about autoimmune diabetes?. Diabetologia, 2004, 47, 1476-1487.	6.3	10
131	Presentation of Antigen by Endothelial Cells and Chemoattraction Are Required for Homing of Insulin-specific CD8+ T Cells. Journal of Experimental Medicine, 2003, 197, 643-656.	8.5	196
132	The Study of HLA Class II and Autoimmune Diabetes. Current Molecular Medicine, 2003, 3, 1-15.	1.3	22
133	Analysis of structure and function relationships of an autoantigenic peptide of insulin bound to H-2Kd that stimulates CD8 T cells in insulin-dependent diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5551-5556.	7.1	58
134	Autoreactive CD8 T Cells in Organ-Specific Autoimmunity. Immunity, 2002, 17, 1-6.	14.3	178
135	IFN-Î ³ Affects Homing of Diabetogenic T Cells. Journal of Immunology, 2001, 167, 6637-6643.	0.8	94
136	The regulatory role of DR4 in a spontaneous diabetes DQ8 transgenic model. Journal of Clinical Investigation, 2001, 107, 871-880.	8.2	61
137	Neonatal Tumor Necrosis Factor α Promotes Diabetes in Nonobese Diabetic Mice by Cd154-Independent Antigen Presentation to Cd8+ T Cells. Journal of Experimental Medicine, 2000, 191, 225-238.	8.5	71
138	In Vivo Evidence for the Contribution of Human Histocompatibility Leukocyte Antigen (Hla)-Dq Molecules to the Development of Diabetes. Journal of Experimental Medicine, 2000, 191, 97-104.	8.5	88
139	Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nature Medicine, 1999, 5, 1026-1031.	30.7	420
140	Transgenes and knockout mutations in animal models of type 1 diabetes and multiple sclerosis. Immunological Reviews, 1999, 169, 93-106.	6.0	40
141	The Role of CD4 vs. CD8 T Cells in IDDM. Journal of Autoimmunity, 1999, 13, 290-295.	6.5	66
142	A Novel Method for Concurrent Visualization of Immunostain Under Light and Electron Microscopy in Pancreatic Islets. Journal of Histochemistry and Cytochemistry, 1998, 46, 1341-1345.	2.5	1
143	The Role of Lymphocyte Subsets in Accelerated Diabetes in Nonobese Diabetic–Rat Insulin Promoter–B7-1 (NOD-RIP-B7-1) Mice. Journal of Experimental Medicine, 1998, 187, 1985-1993.	8.5	73
144	Induction of insulitis by glutamic acid decarboxylase peptide-specific and HLA-DQ8-restricted CD4(+) T cells from human DQ transgenic mice Journal of Clinical Investigation, 1998, 102, 947-957.	8.2	52

#	Article	IF	CITATIONS
145	Inhibition of Diabetes by an Insulin-Reactive CD4 T-Cell Clone in the Nonobese Diabetic Mouse. Diabetes, 1997, 46, 1124-1132.	0.6	62
146	The role of CD4 and CD8 T cells in type I diabetes in the NOD mouse. Research in Immunology, 1997, 148, 327-332.	0.9	42
147	CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells Journal of Experimental Medicine, 1996, 183, 67-76.	8.5	321
148	Immunoglobulin synthesis and generalized autoimmunity in mice congenitally deficient in αβ(+) T cells. Nature, 1994, 369, 654-658.	27.8	175
149	Role of the enviroment in the pathogenesis of type 1 diabetes. Endocrine Abstracts, 0, , .	0.0	0