Hay-Oak Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/374222/publications.pdf Version: 2024-02-01

HAV-OAK DADK

#	Article	IF	CITATIONS
1	Up-regulation of the Cdc42 GTPase limits the replicative life span of budding yeast. Molecular Biology of the Cell, 2022, 33, mbcE20010087.	2.1	2
2	Regulation of Cdc42 for polarized growth in budding yeast. Microbial Cell, 2020, 7, 175-189.	3.2	24
3	Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1. Molecular Biology of the Cell, 2019, 30, 2543-2557.	2.1	20
4	Genome-Wide Studies of Rho5-Interacting Proteins That Are Involved in Oxidant-Induced Cell Death in Budding Yeast. G3: Genes, Genomes, Genetics, 2019, 9, 921-931.	1.8	9
5	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
6	The shared role of the Rsr1 GTPase and Gic1/Gic2 in Cdc42 polarization. Molecular Biology of the Cell, 2018, 29, 2359-2369.	2.1	14
7	Fine-tuning the orientation of the polarity axis by Rga1, a Cdc42 GTPase-activating protein. Molecular Biology of the Cell, 2017, 28, 3773-3788.	2.1	16
8	Probing Cdc42 Polarization Dynamics in Budding Yeast Using a Biosensor. Methods in Enzymology, 2017, 589, 171-190.	1.0	17
9	Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. Journal of Cell Science, 2015, 128, 2106-2117.	2.0	22
10	A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae. Journal of Molecular Biology, 2015, 427, 2088-2103.	4.2	34
11	Bimolecular Fluorescence Complementation (BiFC) Analysis: Advances and Recent Applications for Genome-Wide Interaction Studies. Journal of Molecular Biology, 2015, 427, 2039-2055.	4.2	207
12	Bud3 activates Cdc42 to establish a proper growth site in budding yeast. Journal of Cell Biology, 2014, 206, 19-28.	5.2	42
13	Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast. PLoS ONE, 2013, 8, e56665.	2.5	22
14	Cell Polarization and Cytokinesis in Budding Yeast. Genetics, 2012, 191, 347-387.	2.9	273
15	The Rho1 GTPase Acts Together With a Vacuolar Glutathione S-Conjugate Transporter to Protect Yeast Cells From Oxidative Stress. Genetics, 2011, 188, 859-870.	2.9	27
16	The Rsr1/Bud1 GTPase Interacts with Itself and the Cdc42 GTPase during Bud-Site Selection and Polarity Establishment in Budding Yeast. Molecular Biology of the Cell, 2010, 21, 3007-3016.	2.1	48
17	The Rho5 GTPase is necessary for oxidant-induced cell death in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1522-1527.	7.1	40
18	Central Roles of Small GTPases in the Development of Cell Polarity in Yeast and Beyond. Microbiology and Molecular Biology Reviews, 2007, 71, 48-96.	6.6	376

Hay-Oak Park

#	Article	IF	CITATIONS
19	Interactions among Rax1p, Rax2p, Bud8p, and Bud9p in Marking Cortical Sites for Bipolar Bud-site Selection in Yeast. Molecular Biology of the Cell, 2004, 15, 5145-5157.	2.1	48
20	Interaction between a Ras and a Rho GTPase Couples Selection of a Growth Site to the Development of Cell Polarity in Yeast. Molecular Biology of the Cell, 2003, 14, 4958-4970.	2.1	82
21	Localization of the Rsr1/Bud1 GTPase Involved in Selection of a Proper Growth Site in Yeast. Journal of Biological Chemistry, 2002, 277, 26721-26724.	3.4	79
22	A GDP/GTP Exchange Factor Involved in Linking a Spatial Landmark to Cell Polarity. Science, 2001, 292, 1376-1378.	12.6	99
23	BUD2 encodes a GTPase-activating protein for Budl/Rsrl necessary for proper bud-site selection in yeast. Nature, 1993, 365, 269-274.	27.8	182