

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741715/publications.pdf Version: 2024-02-01

YONG CAL

#	Article	IF	CITATIONS
1	Decreased bioavailability of both inorganic mercury and methylmercury in anaerobic sediments by sorption on iron sulfide nanoparticles. Journal of Hazardous Materials, 2022, 424, 127399.	6.5	14
2	Dithizone-functionalized C18 online solid-phase extraction-HPLC-ICP-MS for speciation of ultra-trace organic and inorganic mercury in cereals and environmental samples. Journal of Environmental Sciences, 2022, 115, 403-410.	3.2	20
3	Understanding foliar accumulation of atmospheric Hg in terrestrial vegetation: Progress and challenges. Critical Reviews in Environmental Science and Technology, 2022, 52, 4331-4352.	6.6	19
4	Possible pathways for mercury methylation in oxic marine waters. Critical Reviews in Environmental Science and Technology, 2022, 52, 3997-4015.	6.6	21
5	Challenges for utilization and management of crop straw from Cdâ€contaminated soil. Soil Use and Management, 2022, 38, 1337-1339.	2.6	6
6	Binding characteristics of Hg(II) with extracellular polymeric substances: implications for Hg(II) reactivity within periphyton. Environmental Science and Pollution Research, 2022, , 1.	2.7	1
7	Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor. Environmental Science & Technology, 2022, 56, 6754-6764.	4.6	8
8	Loss and Increase of the Electron Exchange Capacity of Natural Organic Matter during Its Reduction and Reoxidation: The Role of Quinone and Nonquinone Moieties. Environmental Science & Technology, 2022, 56, 6744-6753.	4.6	30
9	Effects of physical disturbance of sediment on the cycling of mercury in coastal regions. Science of the Total Environment, 2022, 838, 156298.	3.9	4
10	Mercury isotope fractionation during methylmercury transport and transformation: A review focusing on analytical method, fractionation characteristics, and its application. Science of the Total Environment, 2022, 841, 156558.	3.9	6
11	Chromatographic framework for coffee ring effect-driven separation of small molecules in surface enhanced Raman spectroscopy analysis. Talanta, 2022, 250, 123688.	2.9	2
12	Influence of dissolved organic matter on methylmercury transformation during aerobic composting of municipal sewage sludge under different C/N ratios. Journal of Environmental Sciences, 2022, 119, 130-138.	3.2	7
13	Leaching behavior and transformation of total mercury and methylmercury from raw and lime-conditioned sewage sludge under simulated rain. Chemosphere, 2021, 262, 127791.	4.2	8
14	Periphyton as an important source of methylmercury in Everglades water and food web. Journal of Hazardous Materials, 2021, 410, 124551.	6.5	12
15	Enriched isotope tracing to reveal the fractionation and lability of legacy and newly introduced cadmium under different amendments. Journal of Hazardous Materials, 2021, 403, 123975.	6.5	11
16	Evidence of Foodborne Transmission of the Coronavirus (COVID-19) through the Animal Products Food Supply Chain. Environmental Science & Technology, 2021, 55, 2713-2716.	4.6	35
17	Release of legacy mercury and effect of aquaculture on mercury biogeochemical cycling in highly polluted Ya-Er Lake, China. Chemosphere, 2021, 275, 130011.	4.2	21
18	Dark Reduction of Mercury by Microalgae-Associated Aerobic Bacteria in Marine Environments. Environmental Science & Technology, 2021, 55, 14258-14268.	4.6	13

#	Article	IF	CITATIONS
19	Aging and phytoavailability of newly introduced and legacy cadmium in paddy soil and their bioaccessibility in rice grain distinguished by enriched isotope tracing. Journal of Hazardous Materials, 2021, 417, 125998.	6.5	22
20	Gaseous Elemental Mercury [Hg(0)] Oxidation in Poplar Leaves through a Two-Step Single-Electron Transfer Process. Environmental Science and Technology Letters, 2021, 8, 1098-1103.	3.9	8
21	Platinum-Nanoparticle-Modified Single-Walled Carbon Nanotube-Laden Paper Electrodes for Electrocatalytic Oxidation of Methanol. ACS Applied Nano Materials, 2021, 4, 13798-13806.	2.4	6
22	Transformation and uptake of silver nanoparticles and silver ions in rice plant (<i>Oryza sativa</i> L.): the effect of iron plaque and dissolved iron. Environmental Science: Nano, 2020, 7, 599-609.	2.2	19
23	Occurrence and leaching of silver in municipal sewage sludge in China. Ecotoxicology and Environmental Safety, 2020, 189, 109929.	2.9	5
24	PM2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. Journal of Hazardous Materials, 2020, 386, 121659.	6.5	39
25	Monitoring AuNP Dynamics in the Blood of a Single Mouse Using Single Particle Inductively Coupled Plasma Mass Spectrometry with an Ultralow-Volume High-Efficiency Introduction System. Analytical Chemistry, 2020, 92, 14872-14877.	3.2	9
26	Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials, 2020, 10, 1604.	1.9	8
27	Mercury and arsenic in processed fins from nine of the most traded shark species in the Hong Kong and China dried seafood markets: The potential health risks of shark fin soup. Marine Pollution Bulletin, 2020, 157, 111281.	2.3	22
28	Occurrence of Mercurous [Hg(I)] Species in Environmental Solid Matrices as Probed by Mild 2-Mercaptoethanol Extraction and HPLC-ICP-MS Analysis. Environmental Science and Technology Letters, 2020, 7, 482-488.	3.9	15
29	Environmental chemistry and toxicology of heavy metals. Ecotoxicology and Environmental Safety, 2020, 202, 110926.	2.9	6
30	Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2020, 1106, 88-95.	2.6	13
31	Occurrence, speciation and fate of mercury in the sewage sludge of China. Ecotoxicology and Environmental Safety, 2019, 186, 109787.	2.9	19
32	Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2019, 91, 8280-8288.	3.2	41
33	Uptake and Transformation of Silver Nanoparticles and Ions by Rice Plants Revealed by Dual Stable Isotope Tracing. Environmental Science & Technology, 2019, 53, 625-633.	4.6	52
34	Facile Photoinduced Generation of Hydroxyl Radical on a Nitrocellulose Membrane Surface and its Application in the Degradation of Organic Pollutants. ChemSusChem, 2018, 11, 843-847.	3.6	13
35	Unrefined humic substances as a potential low-cost amendment for the management of acidic groundwater contamination. Journal of Environmental Management, 2018, 212, 210-218.	3.8	2
36	Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass (<i>Cladium jamaicense</i>) in the Florida Everglades Using a Multi-isotope Technique. Environmental Science & Technology, 2018, 52, 3384-3391.	4.6	34

#	Article	IF	CITATIONS
37	Kinetic and Mechanistic Evaluation of Inorganic Arsenic Species Adsorption onto Humic Acid Grafted Magnetite Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 13540-13547.	1.5	54
38	Probing the DOM-mediated photodegradation of methylmercury by using organic ligands with different molecular structures as the DOM model. Water Research, 2018, 138, 264-271.	5.3	29
39	Raman spectra of thiolated arsenicals with biological importance. Talanta, 2018, 179, 520-530.	2.9	9
40	Thiolation in arsenic metabolism: a chemical perspective. Metallomics, 2018, 10, 1368-1382.	1.0	30
41	Geochemical modeling of mercury speciation in surface water and implications on mercury cycling in the everglades wetland. Science of the Total Environment, 2018, 640-641, 454-465.	3.9	14
42	Characterization and speciation of mercury in mosses and lichens from the high-altitude Tibetan Plateau. Environmental Geochemistry and Health, 2017, 39, 475-482.	1.8	13
43	Elemental mercury: Its unique properties affect its behavior and fate in the environment. Environmental Pollution, 2017, 229, 69-86.	3.7	120
44	Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. Journal of Environmental Management, 2017, 186, 261-267.	3.8	56
45	Occurrence of Methylmercury in Rice-Based Infant Cereals and Estimation of Daily Dietary Intake of Methylmercury for Infants. Journal of Agricultural and Food Chemistry, 2017, 65, 9569-9578.	2.4	31
46	Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure. Aquatic Toxicology, 2017, 193, 152-159.	1.9	19
47	Potential application of SERS for arsenic speciation in biological matrices. Analytical and Bioanalytical Chemistry, 2017, 409, 4683-4695.	1.9	6
48	Development of magneto-plasmonic nanoparticles for multimodal image-guided therapy to the brain. Nanoscale, 2017, 9, 764-773.	2.8	62
49	Critical role of natural organic matter in photodegradation of methylmercury in water: Molecular weight and interactive effects with other environmental factors. Science of the Total Environment, 2017, 578, 535-541.	3.9	35
50	Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Critical Reviews in Environmental Science and Technology, 2017, 47, 2415-2447.	6.6	30
51	Photodegradation mechanism of methyl mercury in environmental waters. Chinese Science Bulletin, 2017, 62, 70-78.	0.4	2
52	Refining mercury emission estimations to the atmosphere from iron and steel production. Journal of Environmental Sciences, 2016, 43, 1-3.	3.2	6
53	Occurrence and speciation of polymeric chromium(III), monomeric chromium(III) and chromium(VI) in environmental samples. Chemosphere, 2016, 156, 14-20.	4.2	42
54	Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications. Journal of Environmental Sciences, 2016, 49, 59-73.	3.2	61

#	Article	IF	CITATIONS
55	Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique. Journal of Hazardous Materials, 2016, 317, 466-475.	6.5	15
56	Stable silver isotope fractionation in the natural transformation process of silver nanoparticles. Nature Nanotechnology, 2016, 11, 682-686.	15.6	85
57	The fate of mercury in municipal wastewater treatment plants in China: Significance and implications for environmental cycling. Journal of Hazardous Materials, 2016, 306, 1-7.	6.5	44
58	Mobility and speciation of arsenic in the coal fly ashes collected from the Savannah River Site (SRS). Chemosphere, 2016, 151, 138-144.	4.2	11
59	Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1009-1010, 55-65.	1.2	29
60	Trace metal profiles in mosses and lichens from the high-altitude Tibetan Plateau. RSC Advances, 2016, 6, 541-546.	1.7	12
61	Biomagnification of mercury in mollusks from coastal areas of the Chinese Bohai Sea. RSC Advances, 2015, 5, 40036-40045.	1.7	18
62	Elemental Mercury in Natural Waters: Occurrence and Determination of Particulate Hg(0). Environmental Science & Technology, 2015, 49, 9742-9749.	4.6	38
63	Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure. Environmental Science & Technology, 2015, 49, 9714-9723.	4.6	46
64	Selective Reduction of Cr(VI) in Chromium, Copper and Arsenic (CCA) Mixed Waste Streams Using UV/TiO2 Photocatalysis. Molecules, 2015, 20, 2622-2635.	1.7	31
65	Mobility of toxic metals in sediments: Assessing methods and controlling factors. Journal of Environmental Sciences, 2015, 31, 203-205.	3.2	22
66	Legacy source of mercury in an urban stream–wetland ecosystem in central North Carolina, USA. Chemosphere, 2015, 138, 960-965.	4.2	9
67	Ultra-sensitive quantification of lysozyme based on element chelate labeling and capillary electrophoresis–inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2014, 812, 12-17.	2.6	18
68	Fumigant methyl iodide can methylate inorganic mercury species in natural waters. Nature Communications, 2014, 5, 4633.	5.8	47
69	Methylmercury Photodegradation in Surface Water of the Florida Everglades: Importance of Dissolved Organic Matter-Methylmercury Complexation. Environmental Science & Technology, 2014, 48, 7333-7340.	4.6	65
70	Dimethylarsinothioyl Glutathione as a Metabolite in Human Multiple Myeloma Cell Lines upon Exposure to Darinaparsin. Chemical Research in Toxicology, 2014, 27, 754-764.	1.7	21
71	Cr(VI) Adsorption and Reduction by Humic Acid Coated on Magnetite. Environmental Science & Technology, 2014, 48, 8078-8085.	4.6	378
72	Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catalysis Today, 2014, 224, 83-88.	2.2	118

#	Article	IF	CITATIONS
73	Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochemical and Photobiological Sciences, 2013, 12, 653-659.	1.6	41
74	Special issue on toxic metal pollution. Science Bulletin, 2013, 58, 133-133.	1.7	0
75	Progress in the study of mercury methylation and demethylation in aquatic environments. Science Bulletin, 2013, 58, 177-185.	1.7	59
76	Studying arsenite–humic acid complexation using size exclusion chromatography–inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 2013, 262, 1223-1229.	6.5	26
77	Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper. Chemosphere, 2013, 91, 1082-1087.	4.2	24
78	Investigating Uptake and Translocation of Mercury Species by Sawgrass (Cladium jamaicense) Using a Stable Isotope Tracer Technique. Environmental Science & Technology, 2013, 47, 9678-9684.	4.6	37
79	Estimation of the Major Source and Sink of Methylmercury in the Florida Everglades. Environmental Science & Technology, 2012, 46, 5885-5893.	4.6	37
80	Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere, 2012, 88, 8-16.	4.2	30
81	Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Science of the Total Environment, 2012, 419, 170-177.	3.9	80
82	Alterations in Glutathione Levels and Apoptotic Regulators Are Associated with Acquisition of Arsenic Trioxide Resistance in Multiple Myeloma. PLoS ONE, 2012, 7, e52662.	1.1	11
83	Mechanisms of Efficient Arsenite Uptake by Arsenic Hyperaccumulator Pteris vittata. Environmental Science & Technology, 2011, 45, 9719-9725.	4.6	56
84	Legacy and Fate of Mercury and Methylmercury in the Florida Everglades. Environmental Science & Technology, 2011, 45, 496-501.	4.6	15
85	Complexation of Arsenite with Humic Acid in the Presence of Ferric Iron. Environmental Science & Technology, 2011, 45, 3210-3216.	4.6	146
86	Demethylation of methylarsonic acid by a microbial community. Environmental Microbiology, 2011, 13, 1205-1215.	1.8	112
87	Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: Effects of frond harvesting regimes and arsenic levels in refill water. Journal of Hazardous Materials, 2011, 185, 983-989.	6.5	35
88	Extraction tool and matrix effects on arsenic speciation analysis in cell lines. Analytica Chimica Acta, 2011, 699, 187-192.	2.6	12
89	Field-scale leaching of arsenic, chromium and copper from weathered treated wood. Environmental Pollution, 2010, 158, 1479-1486.	3.7	51
90	Occurrence of monoethylmercury in the Florida Everglades: Identification and verification. Environmental Pollution, 2010, 158, 3378-3384.	3.7	28

#	Article	IF	CITATIONS
91	Complexation of arsenite with dissolved organic matter: Conditional distribution coefficients and apparent stability constants. Chemosphere, 2010, 81, 890-896.	4.2	85
92	TiO2 photocatalytic degradation of phenylarsonic acid. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 61-68.	2.0	95
93	Distribution Patterns of Inorganic Mercury and Methylmercury in Tissues of Rice (<i>Oryza sativa) Tj ETQq1 1 0.7 2010, 58, 4951-4958.</i>	784314 rg 2.4	BT /Overlock 183
94	Degradation of Methylmercury and Its Effects on Mercury Distribution and Cycling in the Florida Everglades. Environmental Science & Technology, 2010, 44, 6661-6666.	4.6	74
95	Transport and interaction of arsenic, chromium, and copper associated with CCA-treated wood in columns of sand and sand amended with peat. Chemosphere, 2010, 78, 989-995.	4.2	14
96	Darinaparsin induces a unique cellular response and is active in an arsenic trioxide-resistant myeloma cell line. Molecular Cancer Therapeutics, 2009, 8, 1197-1206.	1.9	49
97	Spatial Variability in Mercury Cycling and Relevant Biogeochemical Controls in the Florida Everglades. Environmental Science & Technology, 2009, 43, 4361-4366.	4.6	28
98	Speciation, formation, stability and analytical challenges of human arsenic metabolites. Journal of Analytical Atomic Spectrometry, 2009, 24, 1397.	1.6	39
99	Design and Performance of a Mesocosm Chamber for Trichloroethylene Evaporation Study. Water, Air, and Soil Pollution, 2008, 193, 3-13.	1.1	0
100	Metal concentrations in osprey (Pandion haliaetus) populations in the Florida Bay estuary. Ecotoxicology, 2008, 17, 616-622.	1.1	12
101	Simultaneous Speciation of Monomethylmercury and Monoethylmercury by Aqueous Phenylation and Purge-and-Trap Preconcentration Followed by Atomic Spectrometry Detection. Analytical Chemistry, 2008, 80, 7163-7168.	3.2	55
102	Role of soil-derived dissolved substances in arsenic transport and transformation in laboratory experiments. Science of the Total Environment, 2008, 406, 180-189.	3.9	24
103	Mercury Mass Budget Estimates and Cycling Seasonality in the Florida Everglades. Environmental Science & Technology, 2008, 42, 1954-1960.	4.6	34
104	Distribution of total and methylmercury in different ecosystem compartments in the Everglades: Implications for mercury bioaccumulation. Environmental Pollution, 2008, 153, 257-265.	3.7	80
105	Comment on "Evaluating landfill disposal of chromated copper arsenate (CCA) treated wood and potential effects on groundwater: Evidence from Florida―by Jennifer K. Saxe, Eric J. Wannamaker, Scott W. Conklin, Todd F. Shupe and Barbara D. Beck [Chemosphere 66 (3) (2007) 496–504]. Chemosphere. 2008. 70. 1930-1931.	4.2	3
106	Chapter 31 Arsenic speciation in soils: an analytical challenge for understanding arsenic biogeochemistry. Developments in Environmental Science, 2007, , 685-708.	0.5	6
107	Adsorption and Photocatalyzed Oxidation of Methylated Arsenic Species in TiO2Suspensions. Environmental Science & Technology, 2007, 41, 5471-5477.	4.6	150
108	Response to Comment on "Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal― Environmental Science & Technology, 2007, 41, 347-348.	4.6	0

#	Article	IF	CITATIONS
109	Hydroxyl Radical Mediated Degradation of Phenylarsonic Acid. Journal of Physical Chemistry A, 2007, 111, 7819-7824.	1.1	45
110	A mass balance approach for evaluating leachable arsenic and chromium from an in-service CCA-treated wood structure. Science of the Total Environment, 2007, 372, 624-635.	3.9	33
111	Influence of Physical Factors on Trichloroethylene Evaporation from Surface Water. Water, Air, and Soil Pollution, 2007, 183, 153-163.	1.1	4
112	Response to Comments on "Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal― Environmental Science & Technology, 2006, 40, 4811-4812.	4.6	1
113	Response to Comment on Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green. Journal of Agricultural and Food Chemistry, 2006, 54, 2438-2440.	2.4	0
114	Release of Arsenic to the Environment from CCA-Treated Wood. 1. Leaching and Speciation during Service. Environmental Science & Technology, 2006, 40, 988-993.	4.6	94
115	Release of Arsenic to the Environment from CCA-Treated Wood. 2. Leaching and Speciation during Disposal. Environmental Science & Technology, 2006, 40, 994-999.	4.6	94
116	Interactions of Arsenic and the Dissolved Substances Derived from Turf Soils. Environmental Science & Technology, 2006, 40, 4659-4665.	4.6	48
117	Extraction of arsenate and arsenite species from soils and sediments. Environmental Pollution, 2006, 141, 22-29.	3.7	60
118	Investigation of disulfonamide ligands derived fromo-phenylenediamine and their Pb(II) complexes by electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 303-308.	0.7	2
119	Mercury characterization in a soil sample collected nearby the DOE Oak Ridge Reservation utilizing sequential extraction and thermal desorption method. Science of the Total Environment, 2006, 369, 384-392.	3.9	70
120	Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green. Journal of Agricultural and Food Chemistry, 2005, 53, 3556-3562.	2.4	59
121	The Roles of Hydroxyl Radical, Superoxide Anion Radical, and Hydrogen Peroxide in the Oxidation of Arsenite by Ultrasonic Irradiation. ACS Symposium Series, 2005, , 333-343.	0.5	5
122	Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern). Journal of Chromatography A, 2004, 1043, 249-254.	1.8	39
123	Arsenic Speciation of Solvent-Extracted Leachate from New and Weathered CCA-Treated Wood. Environmental Science & Technology, 2004, 38, 4527-4534.	4.6	43
124	Low molecular weight thiols in arsenic hyperaccumulator Pteris vittata upon exposure to arsenic and other trace elements. Environmental Pollution, 2004, 129, 69-78.	3.7	65
125	Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environmental Pollution, 2004, 131, 337-345.	3.7	84
126	Purification and Characterization of Thiols in an Arsenic Hyperaccumulator under Arsenic Exposure. Analytical Chemistry, 2003, 75, 7030-7035.	3.2	19

#	Article	IF	CITATIONS
127	Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: assessment of sources and distribution pathways. Environmental Pollution, 2003, 123, 291-299.	3.7	35

Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

129	Derivatization and vapor generation methods for trace element analysis and speciation. Comprehensive Analytical Chemistry, 2003, , 577-592.	0.7	0
130	Metal Tolerance, Accumulation, and Detoxification in Plants with Emphasis on Arsenic in Terrestrial Plants. ACS Symposium Series, 2002, , 95-114.	0.5	24
131	Biogeochemistry of Environmentally Important Trace Elements: Overview. ACS Symposium Series, 2002, , 1-10.	O.5	3
132	Reactions of Ultrasonically Generated Hydroxyl Radicals with Arsenic in Aqueous Environments. ACS Symposium Series, 2002, , 84-94.	0.5	2
133	Assessment of arsenic mobility in the soils of some golf courses in South Florida. Science of the Total Environment, 2002, 291, 123-134.	3.9	121
134	Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 2002, 300, 167-177.	3.9	356
135	Arsenic and phosphorus in seagrass leaves from the Gulf of Mexico. Aquatic Botany, 2001, 71, 247-258.	0.8	33
136	Atomic Fluorescence Determination of Selenium Using Hydride Generation Technique. International Journal of Environmental Analytical Chemistry, 2001, 79, 97-109.	1.8	7
137	A fern that hyperaccumulates arsenic. Nature, 2001, 409, 579-579.	13.7	1,538
137 138	A fern that hyperaccumulates arsenic. Nature, 2001, 409, 579-579. Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155.	13.7 1.8	1,538 76
	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876,		, i
138	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry.	1.8	76
138 139	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1411-1422. Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. TrAC -	1.8 1.5	76 68
138 139 140	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1411-1422. Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. TrAC - Trends in Analytical Chemistry, 2000, 19, 62-66.	1.8 1.5 5.8	76 68 92
138 139 140 141	Gas chromatographic determination of organomercury following aqueous derivatization with sodium tetraethylborate and sodium tetraphenylborate. Journal of Chromatography A, 2000, 876, 147-155. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55, 1411-1422. Speciation and analysis of mercury, arsenic, and selenium by atomic fluorescence spectrometry. TrAC - Trends in Analytical Chemistry, 2000, 19, 62-66. Interactions between dissolved organic carbon and mercury species in surface waters of the Florida Everglades. Applied Geochemistry, 1999, 14, 395-407. Size distribution measurements of dissolved organic carbon in natural waters using ultrafiltration	1.8 1.5 5.8 1.4	76 68 92 66

#	Article	IF	CITATIONS
145	Ethylmercury in the Soils and Sediments of the Florida Everglades. Environmental Science & Technology, 1997, 31, 302-305.	4.6	85
146	Determination of organomercury compounds in aqueous samples by capillary gas chromatography-atomic fluorescence spectrometry following solid-phase extraction. Analytica Chimica Acta, 1996, 334, 251-259.	2.6	114
147	Rapid determination of methyltin compounds in aqueous samples using solid phase microextraction and capillary gas chromatography followingin-situ derivatization with sodium tetraethylborate. Journal of High Resolution Chromatography, 1995, 18, 767-770.	2.0	41
148	On-line preconcentration of selenium(IV) and selenium(VI) in aqueous matrices followed by liquid chromatography-inductively coupled plasma mass spectrometry determination. Analytica Chimica Acta, 1995, 314, 183-192.	2.6	47
149	Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A, 1995, 696, 113-122.	1.8	146
150	In situ Derivatization and Supercritical Fluid Extraction for the Simultaneous Determination of Butyltin and Phenyltin Compounds in Sediment. Analytical Chemistry, 1994, 66, 1161-1167.	3.2	95
151	Determination of butylin compounds in sediment using gas chromatography-atomic absorption spectrometry: comparison of sodium tetrahydroborate and sodium tetraethylborate derivatization methods. Analytica Chimica Acta, 1993, 274, 243-251.	2.6	65
152	Determination of butyltin compounds in river sediment samples by gas chromatography–atomic absorption spectrometry following in situ derivatization with sodium tetraethylborate. Journal of Analytical Atomic Spectrometry, 1993, 8, 119-125.	1.6	55
153	Efficiency of tributyltin extraction from rhine river sediment. Mikrochimica Acta, 1992, 109, 67-71.	2.5	26