Jara Pérez-Jiménez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Instant Controlled Pressure Drop as a Strategy To Modify Extractable and Non-extractable Phenolic Compounds: A Study in Different Grape Pomace Materials. Journal of Agricultural and Food Chemistry, 2022, 70, 6911-6921.	5.2	5
2	Indigestible fraction of guava fruit: Phenolic profile, colonic fermentation and effect on HT-29†cells. Food Bioscience, 2022, 46, 101566.	4.4	2
3	Supplementation with a Cocoa–Carob Blend, Alone or in Combination with Metformin, Attenuates Diabetic Cardiomyopathy, Cardiac Oxidative Stress and Inflammation in Zucker Diabetic Rats. Antioxidants, 2022, 11, 432.	5.1	12
4	Metabolic regulation of (â^')-epicatechin and the colonic metabolite 2,3-dihydroxybenzoic acid on the glucose uptake, lipid accumulation and insulin signalling in cardiac H9c2 cells. Food and Function, 2022, 13, 5602-5615.	4.6	4
5	Exploring a cocoa–carob blend as a functional food with decreased bitterness: Characterization and sensory analysis. LWT - Food Science and Technology, 2022, 165, 113708.	5.2	5
6	New players in the relationship between diet and microbiota: the role of macromolecular antioxidant polyphenols. European Journal of Nutrition, 2021, 60, 1403-1413.	3.9	10
7	Interâ€Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Molecular Nutrition and Food Research, 2021, 65, 2000113.	3.3	16
8	Characterisation of Muffins with Upcycled Sunflower Flour. Foods, 2021, 10, 426.	4.3	12
9	A potential of banana flower and pseudoâ€stem as novel ingredients rich in phenolic compounds. International Journal of Food Science and Technology, 2021, 56, 5601-5608.	2.7	17
10	Evaluation of the potential of total proanthocyanidin content in feces as an intake biomarker. Food Research International, 2021, 145, 110390.	6.2	4
11	Potential Relationship between the Changes in Circulating microRNAs and the Improvement in Glycaemic Control Induced by Grape Pomace Supplementation. Foods, 2021, 10, 2059.	4.3	2
12	Labels on bars of solid chocolate and chocolate bar sweets in the Polish market: A nutritional approach and implications for the consumer. Journal of Food Composition and Analysis, 2021, 102, 104029.	3.9	4
13	Modification on the polyphenols and dietary fiber content of grape pomace by instant controlled pressure drop. Food Chemistry, 2021, 360, 130035.	8.2	15
14	Design of polyphenol-rich diets in clinical trials: A systematic review. Food Research International, 2021, 149, 110655.	6.2	16
15	Acute supplementation with grapes in obese subjects did not affect postprandial metabolism: a randomized, double-blind, crossover clinical trial. European Journal of Nutrition, 2021, 60, 2671-2681.	3.9	3
16	Effects of acute intake of grape/pomegranate pomace dietary supplement on glucose metabolism and oxidative stress in adults with abdominal obesity. International Journal of Food Sciences and Nutrition, 2020, 71, 94-105.	2.8	19
17	Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Research International, 2020, 137, 109589.	6.2	49
18	Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Research International, 2020, 137, 109613.	6.2	32

Jara Pérez-Jiménez

#	Article	IF	CITATIONS
19	Bioaccessibility of phenolic compounds in common beans (<i>Phaseolus vulgaris</i> L.) after in vitro gastrointestinal digestion: A comparison of two cooking procedures. Cereal Chemistry, 2020, 97, 670-680.	2.2	13
20	Potential of a Sunflower Seed By-Product as Animal Fat Replacer in Healthier Frankfurters. Foods, 2020, 9, 445.	4.3	29
21	Modifications of Gut Microbiota after Grape Pomace Supplementation in Subjects at Cardiometabolic Risk: A Randomized Cross-Over Controlled Clinical Trial. Foods, 2020, 9, 1279.	4.3	16
22	Relationship between iron status markers and insulin resistance: an exploratory study in subjects with excess body weight. PeerJ, 2020, 8, e9528.	2.0	8
23	Comparison of the bioactive potential of Roselle (Hibiscus sabdariffa L.) calyx and its by-product: Phenolic characterization by UPLC-QTOF MS and their anti-obesity effect in vivo. Food Research International, 2019, 126, 108589.	6.2	38
24	Design of low glycemic response foods using polyphenols from seaweed. Journal of Functional Foods, 2019, 56, 33-39.	3.4	24
25	Phenolic Metabolites in Plasma and Thigh Meat of Chickens Supplemented with Grape Byproducts. Journal of Agricultural and Food Chemistry, 2019, 67, 4463-4471.	5.2	22
26	In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium guajava) Tj ETQqC	0 Q,rg,BT /	Overlock 101
27	Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement. Journal of Agricultural and Food Chemistry, 2018, 66, 661-673.	5.2	48
28	A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats. European Journal of Nutrition, 2018, 57, 339-349.	3.9	12
29	Estimated dietary intake and major food sources of polyphenols in elderly of Viçosa, Brazil: a population-based study. European Journal of Nutrition, 2018, 57, 617-627.	3.9	46
30	A 6-week supplementation with grape pomace to subjects at cardiometabolic risk ameliorates insulin sensitivity, without affecting other metabolic syndrome markers. Food and Function, 2018, 9, 6010-6019.	4.6	33
31	Association of plasma and urine viscosity with cardiometabolic risk factors and oxidative status. A pilot study in subjects with abdominal obesity. PLoS ONE, 2018, 13, e0204075.	2.5	9
32	Fruit peels as sources of non-extractable polyphenols or macromolecular antioxidants: Analysis and nutritional implications. Food Research International, 2018, 111, 148-152.	6.2	77
33	Emulsion gels containing n-3 fatty acids and condensed tannins designed as functional fat replacers. Food Research International, 2018, 113, 465-473.	6.2	30
34	Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds. Journal of Food Science, 2017, 82, 289-295.	3.1	46
35	Influence of omega-3 PUFAs on the metabolism of proanthocyanidins in rats. Food Research International, 2017, 97, 133-140.	6.2	11
36	Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Research International, 2017, 102, 639-646.	6.2	26

#	Article	IF	CITATIONS
37	Biomarkers of Oxidative Stress in Experimental Models and Human Studies with Nutraceuticals: Measurement, Interpretation, and Significance. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	7
38	Lipidomics to analyze the influence of diets with different EPA:DHA ratios in the progression of Metabolic Syndrome using SHROB rats as a model. Food Chemistry, 2016, 205, 196-203.	8.2	29
39	The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations. Food and Function, 2016, 7, 3516-3523.	4.6	14
40	Effect of <i>n</i> -3 PUFA supplementation at different EPA:DHA ratios on the spontaneously hypertensive obese rat model of the metabolic syndrome. British Journal of Nutrition, 2015, 113, 878-887.	2.3	44
41	Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Research International, 2015, 74, 315-323.	6.2	95
42	Contribution of Macromolecular Antioxidants to Dietary Antioxidant Capacity: A Study in the Spanish Mediterranean Diet. Plant Foods for Human Nutrition, 2015, 70, 365-370.	3.2	50
43	Obtainment and characterization of a potential functional ingredient from olive. International Journal of Food Sciences and Nutrition, 2015, 66, 749-754.	2.8	8
44	<scp>d</scp> -Fagomine attenuates metabolic alterations induced by a high-energy-dense diet in rats. Food and Function, 2015, 6, 2614-2619.	4.6	16
45	Regular Consumption of an Antioxidant-rich Juice Improves Oxidative Status and Causes Metabolome Changes in Healthy Adults. Plant Foods for Human Nutrition, 2015, 70, 9-14.	3.2	39
46	Effects of food processing on polyphenol contents: A systematic analysis using Phenolâ€Explorer data. Molecular Nutrition and Food Research, 2015, 59, 160-170.	3.3	97
47	Cardiovascular Disease-Related Parameters and Oxidative Stress in SHROB Rats, a Model for Metabolic Syndrome. PLoS ONE, 2014, 9, e104637.	2.5	16
48	Effect of <scp>d</scp> â€fagomine on excreted enterobacteria and weight gain in rats fed a highâ€fat highâ€sucrose diet. Obesity, 2014, 22, 976-979.	3.0	23
49	Targets of protein carbonylation in spontaneously hypertensive obese Koletsky rats and healthy Wistar counterparts: A potential role on metabolic disorders. Journal of Proteomics, 2014, 106, 246-259.	2.4	13
50	Non-Extractable Polyphenols in Plant Foods. , 2014, , 203-218.		9
51	Evidence for the formation of maillardized insoluble dietary fiber in bread: A specific kind of dietary fiber in thermally processed food. Food Research International, 2014, 55, 391-396.	6.2	41
52	Reduced protein oxidation in Wistar rats supplemented with marine ω3 PUFAs. Free Radical Biology and Medicine, 2013, 55, 8-20.	2.9	47
53	Mexican â€~Ataulfo' mango (Mangifera indica L) as a source of hydrolyzable tannins. Analysis by MALDI-TOF/TOF MS. Food Research International, 2013, 51, 188-194.	6.2	44
54	Protective effect of the omega-3 polyunsaturated fatty acids: Eicosapentaenoic acid/Docosahexaenoic acid 1:1 ratio on cardiovascular disease risk markers in rats. Lipids in Health and Disease, 2013, 12, 140.	3.0	52

#	Article	IF	CITATIONS
55	Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 953-959.	2.6	219
56	Effect of Pressurized Hot Water Extraction on Antioxidants from Grape Pomace before and after Enological Fermentation. Journal of Agricultural and Food Chemistry, 2013, 61, 6929-6936.	5.2	108
57	Non-extractable polyphenols, a major dietary antioxidant: occurrence, metabolic fate and health effects. Nutrition Research Reviews, 2013, 26, 118-129.	4.1	199
58	Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat070-bat070.	3.0	590
59	Effects of Temperature and Time on Polyphenolic Content and Antioxidant Activity in the Pressurized Hot Water Extraction of Deodorized Thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 2012, 60, 10920-10929.	5.2	121
60	Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Research International, 2012, 49, 798-806.	6.2	40
61	Non-extractable proanthocyanidins from grapes are a source of bioavailable (epi)catechin and derived metabolites in rats. British Journal of Nutrition, 2012, 108, 290-297.	2.3	56
62	Profile of urinary and fecal proanthocyanidin metabolites from common cinnamon (<i>Cinnamomum) Tj ETQq0 0</i>	0 ₃ rgBT /O	verlock 10 T
63	New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 402, 1327-1336.	3.7	51
64	Metabolites in Contact with the Rat Digestive Tract after Ingestion of a Phenolic-Rich Dietary Fiber Matrix. Journal of Agricultural and Food Chemistry, 2011, 59, 5955-5963.	5.2	45
65	Analysis of Nonextractable Phenolic Compounds in Foods: The Current State of the Art. Journal of Agricultural and Food Chemistry, 2011, 59, 12713-12724.	5.2	152
66	AçaÃ-(Euterpe oleraceae) â€~BRS Pará': A tropical fruit source of antioxidant dietary fiber and high antioxidant capacity oil. Food Research International, 2011, 44, 2100-2106.	6.2	88
67	Dietary intake of 337 polyphenols in French adults. American Journal of Clinical Nutrition, 2011, 93, 1220-1228.	4.7	351
68	Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition and Food Research, 2010, 54, 939-946.	3.3	129
69	Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 2010, 121, 996-1002.	8.2	932
70	Acerola and cashew apple as sources of antioxidants and dietary fibre. International Journal of Food Science and Technology, 2010, 45, 2227-2233.	2.7	36
71	Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 2010, 64, S112-S120.	2.9	595
72	Urinary metabolites as biomarkers of polyphenol intake in humans: a systematic review. American Journal of Clinical Nutrition, 2010, 92, 801-809.	4.7	134

#	Article	IF	CITATIONS
73	Systematic Analysis of the Content of 502 Polyphenols in 452 Foods and Beverages: An Application of the Phenol-Explorer Database. Journal of Agricultural and Food Chemistry, 2010, 58, 4959-4969.	5.2	267
74	What Contribution Is Beer to the Intake of Antioxidants in the Diet?. , 2009, , 441-448.		4
75	Contribution of cereals to dietary fibre and antioxidant intakes: Toward more reliable methodology. Journal of Cereal Science, 2009, 50, 291-294.	3.7	17
76	Bioavailability of Phenolic Antioxidants Associated with Dietary Fiber: Plasma Antioxidant Capacity After Acute and Long-Term Intake in Humans. Plant Foods for Human Nutrition, 2009, 64, 102-107.	3.2	132
77	Towards an updated methodology for measurement of dietary fiber, including associated polyphenols, in food and beverages. Food Research International, 2009, 42, 840-846.	6.2	114
78	Proanthocyanidin content in foods is largely underestimated in the literature data: An approach to quantification of the missing proanthocyanidins. Food Research International, 2009, 42, 1381-1388.	6.2	125
79	Dietary fiber and antioxidant capacity in <i>Fucus vesiculosus</i> products. International Journal of Food Sciences and Nutrition, 2009, 60, 23-34.	2.8	63
80	Antioxidant capacity of walnut (Juglans regia L.): contribution of oil and defatted matter. European Food Research and Technology, 2008, 227, 425-431.	3.3	99
81	Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chemistry, 2008, 110, 985-990.	8.2	161
82	Antiâ€oxidant capacity of dietary polyphenols determined by ABTS assay: a kinetic expression of the results. International Journal of Food Science and Technology, 2008, 43, 185-191.	2.7	50
83	Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition, 2008, 24, 646-653.	2.4	188
84	Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Research International, 2008, 41, 274-285.	6.2	517
85	Grape products and cardiovascular disease risk factors. Nutrition Research Reviews, 2008, 21, 158-173.	4.1	77
86	Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Research International, 2006, 39, 791-800.	6.2	209
87	Literature Data May Underestimate the Actual Antioxidant Capacity of Cereals. Journal of Agricultural and Food Chemistry, 2005, 53, 5036-5040.	5.2	263
88	Tannins: Bioavailability and Mechanisms of Action. , 0, , 499-508.		7