Lifeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741160/publications.pdf

Version: 2024-02-01

201674 265206 2,666 42 41 27 h-index citations g-index papers 43 43 43 1754 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation. Chemical Society Reviews, 2020, 49, 5359-5406.	38.1	370
2	Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials. Advanced Materials, 2017, 29, 1606929.	21.0	183
3	A Microporous Metalâ€Organic Framework Supramolecularly Assembled from a Cu ^{II} Dodecaborate Cluster Complex for Selective Gas Separation. Angewandte Chemie - International Edition, 2019, 58, 8145-8150.	13.8	165
4	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	13.8	148
5	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie - International Edition, 2017, 56, 16282-16287.	13.8	146
6	A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials. Advanced Materials, 2018, 30, 1705374.	21.0	133
7	Rational Design of Microporous MOFs with Anionic Boron Cluster Functionality and Cooperative Dihydrogen Binding Sites for Highly Selective Capture of Acetylene. Angewandte Chemie - International Edition, 2020, 59, 17664-17669.	13.8	110
8	Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catalysis, 2015, 5, 6724-6731.	11.2	94
9	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	3.6	94
10	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€6ieving. Angewandte Chemie - International Edition, 2020, 59, 3423-3428.	13.8	91
11	A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352, 803-810.	12.7	85
12	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2018, 57, 13145-13149.	13.8	85
13	Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. Journal of Materials Chemistry A, 2019, 7, 27560-27566.	10.3	71
14	Hexafluorogermanate (GeFSIX) Anion-Functionalized Hybrid Ultramicroporous Materials for Efficiently Trapping Acetylene from Ethylene. Industrial & Engineering Chemistry Research, 2018, 57, 7266-7274.	3.7	70
15	Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1902938.	19.5	70
16	Efficient separation of xylene isomers by a guest-responsive metal–organic framework with rotational anionic sites. Nature Communications, 2020, 11, 5456.	12.8	68
17	A highly sensitive flexible metal–organic framework sets a new benchmark for separating propyne from propylene. Journal of Materials Chemistry A, 2018, 6, 24452-24458.	10.3	67
18	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€6ieving. Angewandte Chemie, 2020, 132, 3451-3456.	2.0	63

#	Article	IF	Citations
19	Synthesis of Ionic Ultramicroporous Polymers for Selective Separation of Acetylene from Ethylene. Advanced Materials, 2020, 32, e1907601.	21.0	54
20	Polycatenated Molecular Cage-Based Propane Trap for Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. ACS Applied Materials & Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded Selectivity. ACS Applied Materials & Selectivity. Propylene Purification with Recorded	8.0	50
21	Anion Pillared Metal–Organic Framework Embedded with Molecular Rotors for Size-Selective Capture of CO ₂ from CH ₄ and N ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 3138-3144.	6.7	47
22	A Microporous Metalâ€Organic Framework Supramolecularly Assembled from a Cu ^{II} Dodecaborate Cluster Complex for Selective Gas Separation. Angewandte Chemie, 2019, 131, 8229-8234.	2.0	45
23	Efficient Separation of Propene and Propane Using Anion-Pillared Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2020, 59, 3531-3537.	3.7	44
24	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	2.0	43
25	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€Sieving. Angewandte Chemie, 2017, 129, 16500-16505.	2.0	41
26	A novel interpenetrated anion-pillared porous material with high water tolerance afforded efficient $C \cdot sub \cdot 2 \cdot sub \cdot C \cdot sub \cdot 2 \cdot sub \cdot C \cdot sub \cdot 4 \cdot sub \cdot separation$. Chemical Communications, 2019, 55, 5001-5004.	4.1	41
27	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2018, 130, 13329-13333.	2.0	34
28	Rational Design of Microporous MOFs with Anionic Boron Cluster Functionality and Cooperative Dihydrogen Binding Sites for Highly Selective Capture of Acetylene. Angewandte Chemie, 2020, 132, 17817-17822.	2.0	28
29	Nanoporous Water-Stable Zr-Based Metal–Organic Frameworks for Water Adsorption. ACS Applied Nano Materials, 2021, 4, 4346-4350.	5.0	22
30	One-step removal of alkynes and propadiene from cracking gases using a multi-functional molecular separator. Nature Communications, 2022, 13 , .	12.8	22
31	Metal nanoparticles in ionic liquidâ€cosolvent biphasic systems as active catalysts for acetylene hydrochlorination. AICHE Journal, 2018, 64, 2536-2544.	3.6	18
32	Remarkable separation of C5 olefins in anion-pillared hybrid porous materials. Nano Research, 2021, 14, 541-545.	10.4	16
33	Geometry control of adsorption sites in sulfonate-pillared hybrid ultramicroporous materials for efficient C4 olefin separations. Chemical Engineering Journal, 2021, 425, 130580.	12.7	13
34	Pillared-layer ultramicroporous material for highly selective SO2 capture from CO2 mixtures. Separation and Purification Technology, 2022, 295, 121337.	7.9	8
35	Highly Microporous Activated Carbons with Industrial Potential for Selective Adsorption of Ethane over Ethylene. Industrial & Engineering Chemistry Research, 2021, 60, 13301-13308.	3.7	6
36	Responsive Porous Material for Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination and Selective Capture of Low-Concentration SO ₂ . Industrial & Discrimination SO ₂ . Industrial	3.7	6

#	Article	IF	CITATIONS
37	Amphiphilic Super-Wetting Ionic-Liquid-Based Lower Critical Solution Temperature System: Preparation, Characterization, and Excellent Dispersion Performance for Nanostructured Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 3253-3260.	6.7	4
38	Gas Purification: Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	21.0	3
39	Gas Separation: A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870068.	21.0	3
40	Innentitelbild: Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€5ieving (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16310-16310.	2.0	1
41	Titelbild: Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€Sieving (Angew. Chem. 9/2020). Angewandte Chemie, 2020, 132, 3365-3365.	2.0	0