Christopher M Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3741040/publications.pdf

Version: 2024-02-01

167 papers 12,755 citations

52 h-index 106 g-index

178 all docs

 $\begin{array}{c} 178 \\ \\ \text{docs citations} \end{array}$

178 times ranked 11761 citing authors

#	Article	IF	CITATIONS
1	Cladobotric Acids: Metabolites from Cultures of <i>Cladobotryum</i> sp., Semisynthetic Analogues and Antibacterial Activity. Journal of Natural Products, 2022, 85, 572-580.	3.0	3
2	High quality genome annotation and expression visualisation of a mupirocin-producing bacterium. PLoS ONE, 2022, 17, e0268072.	2.5	2
3	Classifying mobile genetic elements and their interactions from sequence data: The importance of existing biological knowledge. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2104685118.	7.1	4
4	John (Jake) Macmillan. 13 September 1924—12 May 2014. Biographical Memoirs of Fellows of the Royal Society, 2021, 70, 297-312.	0.1	0
5	Total Synthesis of Kalimantacin A. Organic Letters, 2020, 22, 6349-6353.	4.6	5
6	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in <i>Staphylococcus aureus</i> by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie, 2020, 132, 10636-10643.	2.0	6
7	Mixing and matching genes of marine and terrestrial origin in the biosynthesis of the mupirocin antibiotics. Chemical Science, 2020, 11, 5221-5226.	7.4	14
8	The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoylâ€Acyl Carrier Protein Binding Site of Fabl. Angewandte Chemie - International Edition, 2020, 59, 10549-10556.	13.8	20
9	Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS ONE, 2020, 15, e0225202.	2.5	10
10	A Priming Cassette Generates Hydroxylated Acyl Starter Units in Mupirocin and Thiomarinol Biosynthesis. ACS Chemical Biology, 2020, 15, 494-503.	3.4	9
11	Control of βâ€Branching in Kalimantacin Biosynthesis: Application of13Câ€NMR to Polyketide Programming. Angewandte Chemie, 2019, 131, 12576-12580.	2.0	2
12	Control of βâ€Branching in Kalimantacin Biosynthesis: Application of ¹³ Câ€NMR to Polyketide Programming. Angewandte Chemie - International Edition, 2019, 58, 12446-12450.	13.8	13
13	Molecular basis of methylation and chain-length programming in a fungal iterative highly reducing polyketide synthase. Chemical Science, 2019, 10, 8478-8489.	7.4	22
14	Structure revision of cryptosporioptides and determination of the genetic basis for dimeric xanthone biosynthesis in fungi. Chemical Science, 2019, 10, 2930-2939.	7.4	40
15	Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chemical Science, 2019, 10, 233-238.	7.4	42
16	Defining the genes for the final steps in biosynthesis of the complex polyketide antibiotic mupirocin by Pseudomonas fluorescens NCIMB10586. Scientific Reports, 2019, 9, 1542.	3.3	8
17	The cycloaspeptides: uncovering a new model for methylated nonribosomal peptide biosynthesis. Chemical Science, 2018, 9, 4109-4117.	7.4	28
18	Fine Tuning of Antibiotic Activity by a Tailoring Hydroxylase in a Transâ€AT Polyketide Synthase Pathway. ChemBioChem, 2018, 19, 836-841.	2.6	3

#	Article	IF	CITATIONS
19	A Rieske oxygenase/epoxide hydrolase-catalysed reaction cascade creates oxygen heterocycles in mupirocin biosynthesis. Nature Catalysis, 2018, 1, 968-976.	34.4	21
20	Acquisition and Loss of CTX-M-Producing and Non-Producing Escherichia coli in the Fecal Microbiome of Travelers to South Asia. MBio, 2018, 9 , .	4.1	30
21	Strobilurin biosynthesis in Basidiomycete fungi. Nature Communications, 2018, 9, 3940.	12.8	71
22	Modelling Polyketide Synthases and Similar Macromolecular Complexes. , 2018, , 121-144.		0
23	Oryzines A & B, Maleidride Congeners from Aspergillus oryzae and Their Putative Biosynthesis. Journal of Fungi (Basel, Switzerland), 2018, 4, 96.	3. 5	10
24	Plasmid Genomes, Introduction to. , 2018, , 935-954.		O
25	Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angewandte Chemie - International Edition, 2017, 56, 3930-3934.	13.8	15
26	Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics. Angewandte Chemie, 2017, 129, 3988-3992.	2.0	3
27	Annotation of plasmid genes. Plasmid, 2017, 91, 61-67.	1.4	63
28	Elucidation of the relative and absolute stereochemistry of the kalimantacin/batumin antibiotics. Chemical Science, 2017, 8, 6196-6201.	7.4	20
29	Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA. Biochemical Journal, 2017, 474, 3121-3135.	3.7	6
30	Rýcktitelbild: Selected Mutations Reveal New Intermediates in the Biosynthesis of Mupirocin and the Thiomarinol Antibiotics (Angew. Chem. 14/2017). Angewandte Chemie, 2017, 129, 4126-4126.	2.0	O
31	Substrate selectivity of an isolated enoyl reductase catalytic domain from an iterative highly reducing fungal polyketide synthase reveals key components of programming. Chemical Science, 2017, 8, 1116-1126.	7.4	24
32	Plasmid interference for curing antibiotic resistance plasmids in vivo. PLoS ONE, 2017, 12, e0172913.	2.5	42
33	Heterologe Produktion pilzlicher Maleidride enthüllt die kryptische Cyclisierung in ihrer Biosynthese. Angewandte Chemie, 2016, 128, 6896-6900.	2.0	9
34	Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 6784-6788.	13.8	55
35	Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator. Nucleic Acids Research, 2016, 44, 4947-4956.	14.5	6
36	Alternatives to antibioticsâ€"a pipeline portfolio review. Lancet Infectious Diseases, The, 2016, 16, 239-251.	9.1	720

#	Article	IF	CITATIONS
37	Recognition of extended linear and cyclised polyketide mimics by a type II acyl carrier protein. Chemical Science, 2016, 7, 1779-1785.	7.4	11
38	Curing vector for Incl1 plasmids and its use to provide evidence for a metabolic burden of Incl1 CTX-M-1 plasmid pIFM3791 on Klebsiella pneumoniae. Journal of Medical Microbiology, 2016, 65, 611-618.	1.8	10
39	Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chemical Science, 2015, 6, 4837-4845.	7.4	69
40	Exploring Carbon's Allotropy: A Pupil-Led Synthesis of Fullerenes from Graphite. Journal of Chemical Education, 2015, 92, 1263-1265.	2.3	1
41	Kinetic characterisation of the FAD dependent monooxygenase TropB and investigation of its biotransformation potential. RSC Advances, 2015, 5, 49987-49995.	3.6	23
42	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	8.0	715
43	Antimicrobial properties of Pseudomonas strains producing the antibiotic mupirocin. Research in Microbiology, 2014, 165, 695-704.	2.1	26
44	Dissection of the region of Pseudomonas aeruginosa ParA that is important for dimerization and interactions with its partner ParB. Microbiology (United Kingdom), 2014, 160, 2406-2420.	1.8	15
45	Biosynthesis of thiomarinol A and related metabolites of Pseudoalteromonas sp. SANK 73390. Chemical Science, 2014, 5, 397-402.	7.4	35
46	Oxidative dearomatisation: the key step of sorbicillinoid biosynthesis. Chemical Science, 2014, 5, 523-527.	7.4	84
47	Fungal polyketide biosynthesis – a personal perspective. Natural Product Reports, 2014, 31, 1247-1252.	10.3	23
48	Biosynthesis of Mupirocin by <i>Pseudomonas fluorescens</i> NCIMB 10586 Involves Parallel Pathways. Journal of the American Chemical Society, 2014, 136, 5501-5507.	13.7	40
49	Cultivation-Independent Screening Revealed Hot Spots of IncP-1, IncP-7 and IncP-9 Plasmid Occurrence in Different Environmental Habitats. PLoS ONE, 2014, 9, e89922.	2.5	31
50	One pathway, many compounds: heterologous expression of a fungal biosynthetic pathway reveals its intrinsic potential for diversity. Chemical Science, 2013, 4, 3845.	7.4	89
51	The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infectious Diseases, The, 2013, 13, 155-165.	9.1	839
52	A conserved motif flags acyl carrier proteins for \hat{l}^2 -branching in polyketide synthesis. Nature Chemical Biology, 2013, 9, 685-692.	8.0	78
53	Cefotaxime Resistant Escherichia coli Collected from a Healthy Volunteer; Characterisation and the Effect of Plasmid Loss. PLoS ONE, 2013, 8, e84142.	2.5	12
54	Fitness of Escherichia coli strains carrying expressed and partially silent IncN and IncP1 plasmids. BMC Microbiology, 2012, 12, 53.	3.3	77

#	Article	IF	Citations
55	Genetic and Biosynthetic Studies of the Fungal Prenylated Xanthone Shamixanthone and Related Metabolites in <i>Aspergillus spp.</i> Revisited. ChemBioChem, 2012, 13, 1680-1688.	2.6	38
56	Adaptation for Protein Synthesis Efficiency in a Naturally Occurring Self-Regulating Operon. PLoS ONE, 2012, 7, e49678.	2.5	5
57	The programming role of trans-acting enoyl reductases during the biosynthesis of highly reduced fungal polyketides. Chemical Science, 2011, 2, 972.	7.4	71
58	Mupirocin: biosynthesis, special features and applications of an antibiotic from a Gram-negative bacterium. Applied Microbiology and Biotechnology, 2011, 90, 11-21.	3.6	49
59	Manipulation of quorum sensing regulation in Pseudomonas fluorescens NCIMB 10586 to increase mupirocin production. Applied Microbiology and Biotechnology, 2011, 90, 1017-1026.	3.6	13
60	Mupirocin F: structure elucidation, synthesis and rearrangements. Tetrahedron, 2011, 67, 5098-5106.	1.9	9
61	Engineered Thiomarinol Antibiotics Active against MRSA Are Generated by Mutagenesis and Mutasynthesis of <i>Pseudoalteromonas</i> SANK73390. Angewandte Chemie - International Edition, 2011, 50, 3271-3274.	13.8	37
62	A Natural Plasmid Uniquely Encodes Two Biosynthetic Pathways Creating a Potent Anti-MRSA Antibiotic. PLoS ONE, 2011, 6, e18031.	2.5	59
63	Phosphopantetheinylation and Specificity of Acyl Carrier Proteins in the Mupirocin Biosynthetic Cluster. ChemBioChem, 2010, 11, 248-255.	2.6	13
64	Resistance to and synthesis of the antibiotic mupirocin. Nature Reviews Microbiology, 2010, 8, 281-289.	28.6	178
65	Complete Genome Sequence and Comparative Metabolic Profiling of the Prototypical Enteroaggregative Escherichia coli Strain 042. PLoS ONE, 2010, 5, e8801.	2.5	165
66	An efficient stress-free strategy to displace stable bacterial plasmids. BioTechniques, 2010, 48, 223-228.	1.8	43
67	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	9.6	370
68	In vivo Mutational Analysis of the Mupirocin Gene Cluster Reveals Labile Points in the Biosynthetic Pathway: the "Leaky Hosepipe―Mechanism. ChemBioChem, 2008, 9, 1500-1508.	2.6	33
69	A single aromatic residue in transcriptional repressor protein KorA is critical for cooperativity with its coâ€regulator KorB. Molecular Microbiology, 2008, 70, 1502-1514.	2.5	12
70	Distribution of the partitioning protein KorB on the genome of IncP-1 plasmid RK2. Plasmid, 2008, 59, 163-175.	1.4	14
71	Different Pathways to Acquiring Resistance Genes Illustrated by the Recent Evolution of IncW Plasmids. Antimicrobial Agents and Chemotherapy, 2008, 52, 1472-1480.	3.2	71
72	A Mammalian Type I Fatty Acid Synthase Acyl Carrier Protein Domain Does Not Sequester Acyl Chains. Journal of Biological Chemistry, 2008, 283, 518-528.	3.4	69

#	Article	IF	CITATIONS
73	Mutational Analysis Reveals That All Tailoring Region Genes Are Required for Production of Polyketide Antibiotic Mupirocin by Pseudomonas fluorescens. Journal of Biological Chemistry, 2007, 282, 15451-15461.	3.4	36
74	Mupirocin H, a novel metabolite resulting from mutation of the HMG-CoA synthase analogue, mupH in Pseudomonas fluorescens. Chemical Communications, 2007, , 2040.	4.1	41
7 5	Methods for the synthesis of carbon-13 labelled acids and esters. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 338-341.	1.0	3
76	Increased Abundance of IncP-1Î ² Plasmids and Mercury Resistance Genes in Mercury-Polluted River Sediments: First Discovery of IncP-1Î ² Plasmids with a Complex mer Transposon as the Sole Accessory Element. Applied and Environmental Microbiology, 2006, 72, 7253-7259.	3.1	83
77	The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. Microbiology (United Kingdom), 2006, 152, 1621-1637.	1.8	29
78	Shift to Pseudomonic Acid B Production in P. fluorescens NCIMB10586 by Mutation of Mupirocin Tailoring Genes mupO, mupU, mupV, and macpE. Chemistry and Biology, 2005, 12, 825-833.	6.0	29
79	Ability of IncP-9 plasmid pM3 to replicate in Escherichia coli is dependent on both rep and par functions. Molecular Microbiology, 2005, 57, 819-833.	2.5	15
80	Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria. Nature Reviews Microbiology, 2005, 3, 711-721.	28.6	1,654
81	Tandemly Duplicated Acyl Carrier Proteins, Which Increase Polyketide Antibiotic Production, Can Apparently Function Either in Parallel or in Series. Journal of Biological Chemistry, 2005, 280, 6399-6408.	3.4	58
82	Mupirocin W, a novel pseudomonic acid produced by targeted mutation of the mupirocin biosynthetic gene cluster. Chemical Communications, 2005, , 1179 .	4.1	33
83	Flexibility in Repression and Cooperativity by KorB of Broad Host Range IncP-1 Plasmid RK2. Journal of Molecular Biology, 2005, 349, 302-316.	4.2	35
84	ParB of Pseudomonas aeruginosa: Interactions with Its Partner ParA and Its Target parS and Specific Effects on Bacterial Growth. Journal of Bacteriology, 2004, 186, 6983-6998.	2.2	89
85	Transcriptional regulation of pWW0 transfer genes in Pseudomonas putida KT2440. Plasmid, 2004, 52, 169-181.	1.4	12
86	Characterization of the Mupirocin Biosynthesis Gene Cluster from Pseudomonas fluorescens NCIMB 10586. Chemistry and Biology, 2003, 10, 419-430.	6.0	251
87	Co-operative interactions control conjugative transfer of broad host-range plasmid RK2: full effect of minor changes in TrbA operator depends on KorB. Molecular Microbiology, 2003, 49, 1095-1108.	2.5	19
88	Streptomyces coelicolor phosphopantetheinyl transferase: a promiscuous activator of polyketide and fatty acid synthase acyl carrier proteins. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1644-1649.	1.3	32
89	DNA recognition by the KorA proteins of IncP-1 plasmids RK2 and R751. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 110-118.	2.4	12
90	Paradigms of plasmid organization. Molecular Microbiology, 2002, 37, 485-491.	2.5	185

#	Article	IF	CITATIONS
91	Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environmental Microbiology, 2002, 4, 856-871.	3.8	208
92	The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere The GenBank accession number for the pIPO2T sequence reported in this paper is AJ297913 Microbiology (United) Tj ETQq0 (o d'8 _{BT} /(Overlock 10 T
93	The bacterial ParA-ParB partitioning proteins. Journal of Biotechnology, 2001, 91, 1-34.	3.8	192
94	Regulatory circuits for plasmid survival. Current Opinion in Microbiology, 2001, 4, 194-200.	5.1	79
95	Cooperativity between KorB and TrbA Repressors of Broad-Host-Range Plasmid RK2. Journal of Bacteriology, 2001, 183, 1022-1031.	2.2	51
96	Stereocontrolled synthesis of 2,4,5-trisubstituted tetrahydropyrans. Chemical Communications, 2001, , 835-836.	4.1	70
97	Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586 The GenBank accession numbers for the sequences determined in this work are AF318063 (mupA), AF318064 (mupR) and AF318065 (mupl) Microbiology (United Kingdom), 2001. 147. 2127-2139.	1.8	126
98	The hierarchy of KorB binding at its 12 binding sites on the broad-host-range plasmid RK2 and modulation of this binding by IncC1 protein 1 1Edited by J. Karn. Journal of Molecular Biology, 2000, 295, 411-422.	4.2	36
99	Structure elucidation and synthesis of (4S,5S,6Z,8E )-5-hydroxydeca-6,8-dien-4-olide [(S,S)-sapinofuranone B]—a novel γ-lactone metabolite of Acremonium strictum. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2475-2481.	1.3	23
100	A versatile approach to the total synthesis of the pseudomonic acids. Chemical Communications, 2000, , $1109-1110$.	4.1	30
101	NMR studies of tautomerism in the fungal melanin biosynthesis intermediate 1,3,8-trihydroxynaphthalene. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2771-2775.	1.3	17
102	The replication and stable-inheritance functions of IncP-9 plasmid pM3 The GenBank accession number for the sequence reported in this paper is AF078924 Microbiology (United Kingdom), 2000, 146, 2249-2258.	1.8	27
103	A chain initiation factor common to both modular and aromatic polyketide synthases. Nature, 1999, 401, 502-505.	27.8	254
104	The mobile loop region of the NAD(H) binding component (dl) of proton-translocating nicotinamide nucleotide transhydrogenase from Rhodospirillum rubrum: complete NMR assignment and effects of bound nucleotides. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1412, 139-148.	1.0	16
105	Conserved C-terminal region of global repressor KorA of broad-host-range plasmid RK2 is required for co-operativity between KorA and a second RK2 global regulator, KorB. Journal of Molecular Biology, 1999, 289, 211-221.	4.2	42
106	IncC of Broad-Host-Range Plasmid RK2 Modulates KorB Transcriptional Repressor Activity In Vivo and Operator Binding In Vitro. Journal of Bacteriology, 1999, 181, 2807-2815.	2.2	38
107	Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiology Reviews, 1998, 21, 291-319.	8.6	100
108	Interdomain hydride transfer in proton-translocating transhydrogenase. Biochimica Et Biophysica Acta - Bioenergetics, 1998, 1365, 79-86.	1.0	25

#	Article	IF	CITATIONS
109	Acylation of Streptomycestype II polyketide synthase acyl carrier proteins. FEBS Letters, 1998, 433, 132-138.	2.8	29
110	Mutational analysis of the global regulator KorA of broad-host-range plasmid RK2. Journal of Molecular Biology, 1998, 281, 453-463.	4.2	15
111	Complete sequence of the IncPÎ ² plasmid R751: implications for evolution and organisation of the IncP backbone. Journal of Molecular Biology, 1998, 282, 969-990.	4.2	222
112	The partitioning activity of the RK2 central control region requires only incC, korB and KorB-binding site OB3 but other KorB-binding sites form destabilizing complexes in the absence of Ob3. Microbiology (United Kingdom), 1998, 144, 3369-3378.	1.8	72
113	Control of genes for conjugative transfer of plasmids and other mobile elements. FEMS Microbiology Reviews, 1998, 21, 291-319.	8.6	4
114	Divergence and conservation of the partitioning and global regulation functions in the central control region of the IncP plasmids RK2 and R751. Microbiology (United Kingdom), 1997, 143, 2167-2177.	1.8	50
115	Cochliobolic Acid, a Novel Metabolite Produced by Cochliobolus lunatus, Inhibits Binding of TGF-α to the EGF Receptor in a SPA Assay. Journal of Natural Products, 1997, 60, 6-8.	3.0	7
116	Solution Structure of the Actinorhodin Polyketide Synthase Acyl Carrier Protein fromStreptomyces coelicolorA3(2)â€,‡. Biochemistry, 1997, 36, 6000-6008.	2. 5	147
117	Role of Methionine-239, an Amino Acid Residue in the Mobile-Loop Region of the NADH-Binding Domain (Domain I) of Proton-Translocating Transhydrogenase. Biochemistry, 1997, 36, 14762-14770.	2.5	14
118	Dissection of the switch between genes for replication and transfer of promiscuous plasmid RK2: basis of the dominance of trfAp over trbAp and specificity for KorA in controlling the switch. Journal of Molecular Biology, 1997, 265, 507-518.	4.2	30
119	Post-translational modification of heterologously expressed Streptomyces type II polyketide synthase acyl carrier proteins. FEBS Letters, 1997, 405, 267-272.	2.8	45
120	Mutations at tyrosine-235 in the mobile loop region of domain I protein of transhydrogenase from Rhodospirillum rubrum strongly inhibit hydride transfer. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1320, 265-274.	1.0	20
121	Complete Nucleotide Sequence of the Replicator Region of Paracoccus (Thiobacillus) versutus pTAV1 Plasmid and Its Correlation to Several Plasmids of Agrobacterium and Rhizobium Species. Plasmid, 1997, 38, 53-59.	1.4	15
122	Conservation of the Genetic Switch between Replication and Transfer Genes of IncP Plasmids but Divergence of the Replication Functions Which Are Major Host-Range Determinants. Plasmid, 1996, 36, 95-111.	1.4	37
123	Two Related Rolling Circle Replication Plasmids from Salt-Tolerant Bacteria. Plasmid, 1996, 36, 191-199.	1.4	32
124	Mutation of Tyr235 in the NAD(H)-binding Subunit of the Proton-translocating Nicotinamide Nucleotide Transhydrogenase of Rhodospirillum rubrum Affects the Conformational Dynamics of a Mobile Loop and Lowers the Catalytic Activity of the Enzyme. Journal of Biological Chemistry, 1996, 271, 10109-10115.	3.4	11
125	Interaction of Nucleotides with the NAD(H)-binding Domain of the Proton-translocating Transhydrogenase of Rhodospirillum rubrum. Journal of Biological Chemistry, 1996, 271, 10103-10108.	3.4	32

Plasmid-mediated exchange between molecular biologists and ecologists. Microbiology (United) Tj ETQq $0\ 0\ 0\ rgBT/Qverlock_010\ Tf\ 50\ 6$

#	Article	IF	CITATIONS
127	Conformational Dynamics of a Mobile Loop in the NAD(H)-Binding Subunit of Proton-Translocating Transhydrogenases from Rhodospirillum Rubrum and Escherichia Coli. FEBS Journal, 1995, 232, 315-326.	0.2	41
128	Evolution of the korA-oriV segment of promiscuous IncP plasmids. Microbiology (United Kingdom), 1995, 141, 1201-1210.	1.8	14
129	Purification of KorA Protein from Broad Host Range Plasmid RK2: Definition of a Hierarchy of KorA Operators. Journal of Molecular Biology, 1995, 253, 39-50.	4.2	56
130	Dissection of the Core and Auxiliary Sequences in the Vegetative Replication Origin of Promiscuous Plasmid RK2. Journal of Molecular Biology, 1995, 254, 608-622.	4.2	32
131	Properties of the Soluble Polypeptide of the Proton-Translocating Transhydrogenase from Rhodospirillum rubrum Obtained by Expression in Escherichia coli. FEBS Journal, 1995, 228, 719-726.	0.2	66
132	Complete Nucleotide Sequence of Birmingham IncPα Plasmids. Journal of Molecular Biology, 1994, 239, 623-663.	4.2	502
133	Inhibition of proton-translocating transhydrogenase from photosynthetic bacteria by N,N'-dicyclohexylcarbodiimide. FEBS Journal, 1993, 211, 663-669.	0.2	13
134	Multifunctional repressor KorB can block transcription by preventing isomerization of RNA polymerase – promoter complexes. Nucleic Acids Research, 1993, 21, 1141-1148.	14.5	61
135	Proton-translocating transhydrogenase in bacteria. Biochemical Society Transactions, 1993, 21, 1010-1013.	3.4	14
136	Crosstalk between plasmid vegetative replication and conjugative transfer: repression of thetrfAoperon bytrbAof broad host range plasmid RK2. Nucleic Acids Research, 1992, 20, 3939-3944.	14.5	54
137	The relation between the soluble factor associated with H+-transhydrogenase of Rhodospirillum rubrum and the enzyme from mitochondria and Escherichia coli. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1100, 332-338.	1.0	40
138	kfrA gene of broad host range plasmid RK2 encodes a novel DNA-binding protein. Journal of Molecular Biology, 1992, 225, 651-660.	4.2	43
139	Conjugative transfer functions of broad-host-range plasmid RK2 are coregulated with vegetative replication. Molecular Microbiology, 1992, 6, 907-920.	2.5	89
140	Determination by NMR methods of the structure and stereochemistry of astellatol, a new and unusual sesterterpene. Magnetic Resonance in Chemistry, 1992, 30, S18-S23.	1.9	23
141	Synthetic and mechanistic studies on fungal metabolic pathways: A guide to fungicide design. Pest Management Science, 1991, 31, 539-554.	0.4	9
142	Broad host range plasm id RK2 encodes a polypeptide related to single-stranded DNA binding protein (SSB) of Escherichia coli. Nucleic Acids Research, 1990, 18, 2812-2812.	14.5	10
143	Identification of a seventh operon on plasmid RK2 regulated by the korA gene product. Gene, 1990, 89, 29-35.	2.2	32
144	Analysis of nonpolar insertion mutations in the trfA gene of IncP plasmid RK2 which affect its broad-host-range property. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1989, 1007, 301-308.	2.4	22

#	Article	IF	Citations
145	Biosynthetic studies on pseudomonic acid (mupirocin), a novel antibiotic metabolite of Pseudomonas fluorescens. Journal of the Chemical Society Perkin Transactions 1, 1989, , 207.	0.9	24
146	Replication of mini RK2 plasmid in extracts of Escherichia coli requires plasmid-encoded protein TrfA and host-encoded proteins DnaA, B, G DNA gyrase and DNA polymerase III. Journal of Molecular Biology, 1988, 203, 927-938.	4.2	66
147	Recent studies on the control of plasmid replication. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1988, 949, 253-263.	2.4	34
148	Gene regulation on broad host range plasmid RK2: identification of three novel operons whose transcription is repressed by both KorA and KorC. Nucleic Acids Research, 1988, 16, 5345-5359.	14.5	39
149	Nucleotide sequence of the transcriptional repressor genekorBwhich plays a key role in regulation of the copy number of broad host range plasmid RK2. Nucleic Acids Research, 1987, 15, 7443-7450.	14.5	54
150	Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the $IncPl^2$ sub-group are closely related. Molecular Genetics and Genomics, 1987, 206, 419-427.	2.4	42
151	Analysis of the vegetative replication origin of broad-host-range plasmid RK2 by transposon mutagenesis. Plasmid, 1986, 15, 132-146.	1.4	31
152	Evidence for the involvement of the incC locus of broad host range plasmid RK2 in plasmid maintenance. Plasmid, 1986, 16, 15-29.	1.4	23
153	ThetrfBregion of broad host range plasmid RK2: the nucleotlde sequence revealsincCand key regulatory genetrfB/korA/korDas overlapping genes. Nucleic Acids Research, 1986, 14, 4453-4469.	14.5	80
154	Comparison of the nucleotide sequences of the vegetative replication origins of broad host range IncP plasmids R751 and RK2 reveals conserved features of probable functional importance. Nucleic Acids Research, 1985, 13, 557-572.	14.5	37
155	Regulation of thetrfAandtrfBpromoters of broad host range plasmid RK2: identification of sequences essential for regulation bytrfB/korA/korD. Nucleic Acids Research, 1985, 13, 8129-8142.	14.5	65
156	ThetrfA andtrfB promoter regions of broad host range plasmid RK2 share common potential regulatory sequences. Nucleic Acids Research, 1984, 12, 3619-3630.	14.5	74
157	Transcription in the trfA region of broad host range plasmid RK2 is regulated by trfB and korB. Molecular Genetics and Genomics, 1984, 195, 523-529.	2.4	66
158	Analysis of the trfA region of broad host-range plasmid RK2 by transposon mutagenesis and identification of polypeptide products. Journal of Molecular Biology, 1984, 175, 229-249.	4.2	111
159	Nucleotide sequence of the trfA gene of broad host-range plasmid RK2. Journal of Molecular Biology, 1984, 175, 251-262.	4.2	112
160	Deletion mapping of kil and kor functions in the trfA and trfB regions of broad host range plasmid RK2. Molecular Genetics and Genomics, 1983, 190, 245-254.	2.4	81
161	Instability of a high-copy-number mutant of a miniplasmid derived from broad host range IncP plasmid RK2. Plasmid, 1983, 10, 184-195.	1.4	21
162	Complementation analysis of replication and maintenance functions of broad host range plasmids RK2 and RP1. Plasmid, 1981, 5, 277-291.	1.4	106

#	Article	IF	CITATIONS
163	Molecular genetics of broad host range plasmid RK2. Plasmid, 1981, 5, 10-19.	1.4	96
164	Replication and incompatibility properties of segments of the origin region of replication of the broad host range plasmid RK2. Molecular Genetics and Genomics, 1981, 181, 1-7.	2.4	93
165	Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Molecular Genetics and Genomics, 1981, 181, 8-12.	2.4	180
166	[17] Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods in Enzymology, 1979, 68, 268-280.	1.0	555
167	Evolution and Population Genetics of Bacterial Plasmids. , 0, , 507-528.		18