Greg Zaharchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/374077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine, 2018, 378, 708-718.	13.9	3,433
2	Recommended implementation of arterial spinâ€labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 2015, 73, 102-116.	1.9	1,663
3	MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): a prospective cohort study. Lancet Neurology, The, 2012, 11, 860-867.	4.9	718
4	Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 679-689.	2.4	480
5	Comparative Overview of Brain Perfusion Imaging Techniques. Stroke, 2005, 36, e83-99.	1.0	397
6	Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Transactions on Medical Imaging, 2019, 38, 167-179.	5.4	373
7	Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications. Radiology, 2016, 281, 337-356.	3.6	360
8	Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know. American Journal of Neuroradiology, 2018, 39, 1390-1399.	1.2	266
9	Glioblastoma Multiforme: Exploratory Radiogenomic Analysis by Using Quantitative Image Features. Radiology, 2014, 273, 168-174.	3.6	265
10	Deep Learning in Neuroradiology. American Journal of Neuroradiology, 2018, 39, 1776-1784.	1.2	222
11	Deep learning enables reduced gadolinium dose for contrastâ€enhanced brain MRI. Journal of Magnetic Resonance Imaging, 2018, 48, 330-340.	1.9	220
12	Arterial Spin-Labeling MRI Can Identify the Presence and Intensity of Collateral Perfusion in Patients With Moyamoya Disease. Stroke, 2011, 42, 2485-2491.	1.0	205
13	Acute Stroke Imaging Research Roadmap II. Stroke, 2013, 44, 2628-2639.	1.0	192
14	Ultra–Low-Dose ¹⁸ F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs. Radiology, 2019, 290, 649-656.	3.6	182
15	Arterial spin labeling MRI: Clinical applications in the brain. Journal of Magnetic Resonance Imaging, 2015, 41, 1165-1180.	1.9	163
16	Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 175-182.	1.9	153
17	Effect of Collateral Blood Flow on Patients Undergoing Endovascular Therapy for Acute Ischemic Stroke, 2014, 45, 1035-1039.	1.0	141
18	The Growth Rate of Early DWI Lesions is Highly Variable and Associated with Penumbral Salvage and Clinical Outcomes following Endovascular Reperfusion. International Journal of Stroke, 2015, 10, 723-729.	2.9	140

#	Article	IF	CITATIONS
19	Cerebrovascular Dynamics of Autoregulation and Hypoperfusion. Stroke, 1999, 30, 2197-2205.	1.0	138
20	Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magnetic Resonance in Medicine, 1999, 41, 1093-1098.	1.9	135
21	Comparison of cerebral blood flow measurement with [¹⁵ 0]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 842-861.	2.4	125
22	Ultraâ€lowâ€dose PET reconstruction using generative adversarial network with feature matching and taskâ€specific perceptual loss. Medical Physics, 2019, 46, 3555-3564.	1.6	121
23	ISLES 2016 and 2017-Benchmarking Ischemic Stroke Lesion Outcome Prediction Based on Multispectral MRI. Frontiers in Neurology, 2018, 9, 679.	1.1	117
24	Theoretical Basis of Hemodynamic MR Imaging Techniques to Measure Cerebral Blood Volume, Cerebral Blood Flow, and Permeability. American Journal of Neuroradiology, 2007, 28, 1850-1858.	1.2	115
25	Quantitative susceptibility mapping using deep neural network: QSMnet. NeuroImage, 2018, 179, 199-206.	2.1	115
26	Computed tomographic perfusion to Predict Response to Recanalization in ischemic stroke. Annals of Neurology, 2017, 81, 849-856.	2.8	110
27	Early Diffusion-Weighted Imaging and Perfusion-Weighted Imaging Lesion Volumes Forecast Final Infarct Size in DEFUSE 2. Stroke, 2013, 44, 681-685.	1.0	106
28	Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging. JAMA Network Open, 2020, 3, e200772.	2.8	98
29	Applications of Deep Learning to Neuro-Imaging Techniques. Frontiers in Neurology, 2019, 10, 869.	1.1	97
30	Combined spin―and gradientâ€echo perfusionâ€weighted imaging. Magnetic Resonance in Medicine, 2012, 68, 30-40.	1.9	91
31	Noncontrast mapping of arterial delay and functional connectivity using restingâ€state functional MRI: A study in Moyamoya patients. Journal of Magnetic Resonance Imaging, 2015, 41, 424-430.	1.9	88
32	Acute Stroke Imaging Research Roadmap III Imaging Selection and Outcomes in Acute Stroke Reperfusion Clinical Trials. Stroke, 2016, 47, 1389-1398.	1.0	88
33	Response to endovascular reperfusion is not time-dependent in patients with salvageable tissue. Neurology, 2015, 85, 708-714.	1.5	87
34	Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients. Stroke, 2017, 48, 2441-2449.	1.0	86
35	Early Diffusion-Weighted Imaging Reversal After Endovascular Reperfusion Is Typically Transient in Patients Imaged 3 to 6 Hours After Onset. Stroke, 2014, 45, 1024-1028.	1.0	84
36	Arterial Spin-Label Imaging in Patients with Normal Bolus Perfusion-weighted MR Imaging Findings: Pilot Identification of the Borderzone Sign. Radiology, 2009, 252, 797-807.	3.6	83

#	Article	IF	CITATIONS
37	Reduced Field-of-View Diffusion Imaging of the Human Spinal Cord: Comparison with Conventional Single-Shot Echo-Planar Imaging. American Journal of Neuroradiology, 2011, 32, 813-820.	1.2	83
38	Comparison of Arterial Spin Labeling and Bolus Perfusion-Weighted Imaging for Detecting Mismatch in Acute Stroke. Stroke, 2012, 43, 1843-1848.	1.0	83
39	CBF measurements using multidelay pseudocontinuous and velocityâ€selective arterial spin labeling in patients with long arterial transit delays: Comparison with xenon CT CBF. Journal of Magnetic Resonance Imaging, 2012, 36, 110-119.	1.9	78
40	Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information. American Journal of Roentgenology, 2019, 212, 44-51.	1.0	75
41	ls T2* Enough to Assess Oxygenation? Quantitative Blood Oxygen Level–Dependent Analysis in Brain Tumor. Radiology, 2012, 262, 495-502.	3.6	72
42	Simultaneous Whole-Body Time-of-Flight 18F-FDG PET/MRI. Clinical Nuclear Medicine, 2015, 40, 1-8.	0.7	70
43	COVID-19-induced anosmia associated with olfactory bulb atrophy. Neuroradiology, 2021, 63, 147-148.	1.1	70
44	Noninvasive Oxygen Partial Pressure Measurement of Human Body Fluids In Vivo Using Magnetic Resonance Imaging. Academic Radiology, 2006, 13, 1016-1024.	1.3	68
45	Artificial Intelligence Applications in Stroke. Stroke, 2020, 51, 2573-2579.	1.0	65
46	Neuronal nitric oxide synthase mutant mice show smaller infarcts and attenuated apparent diffusion coefficient changes in the peri-infarct zone during focal cerebral ischemia. Magnetic Resonance in Medicine, 1997, 37, 170-175.	1.9	61
47	Arterial Spin Label Imaging of Acute Ischemic Stroke and Transient Ischemic Attack. Neuroimaging Clinics of North America, 2011, 21, 285-301.	0.5	61
48	Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magnetic Resonance in Medicine, 2012, 68, 905-911.	1.9	61
49	Revealing subâ€voxel motions of brain tissue using phaseâ€based amplified MRI (aMRI). Magnetic Resonance in Medicine, 2018, 80, 2549-2559.	1.9	61
50	Correlation of AOL recanalization, TIMI reperfusion and TICI reperfusion with infarct growth and clinical outcome. Journal of NeuroInterventional Surgery, 2014, 6, 724-728.	2.0	60
51	Arterial Spin–Labeled Perfusion Imaging in Acute Ischemic Stroke. Stroke, 2014, 45, 1202-1207.	1.0	59
52	Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI. Scientific Reports, 2017, 7, 16126.	1.6	56
53	Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. Magnetic Resonance in Medicine, 2010, 63, 1548-1556.	1.9	54
54	Contrast-enhanced functional blood volume imaging (CE-fBVI): Enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. NeuroImage, 2012, 62, 1726-1731.	2.1	53

#	Article	IF	CITATIONS
55	Collateral status contributes to differences between observed and predicted 24-h infarct volumes in DEFUSE 3. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1966-1974.	2.4	53
56	High-resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol. Magnetic Resonance in Medicine, 2013, 70, 705-710.	1.9	52
57	Continuous assessment of perfusion by tagging including volume and water extraction (CAPTIVE): A steady-state contrast agent technique for measuring blood flow, relative blood volume fraction, and the water extraction fraction. Magnetic Resonance in Medicine, 1998, 40, 666-678.	1.9	51
58	Elevated brain oxygen extraction fraction measured by MRI susceptibility relates to perfusion status in acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 539-551.	2.4	51
59	Simultaneous Perfusion and Permeability Measurements Using Combined Spin- and Gradient-Echo MRI. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 732-743.	2.4	49
60	Glioblastoma Multiforme Recurrence: An Exploratory Study of18F FPPRGD2PET/CT. Radiology, 2015, 277, 497-506.	3.6	49
61	Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 126-135.	2.4	49
62	Chronic kidney disease, cerebral blood flow, and white matter volume in hypertensive adults. Neurology, 2016, 86, 1208-1216.	1.5	48
63	Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2526-2538.	2.4	48
64	Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1391-1417.	2.4	48
65	Comparison of MR and Contrast Venography of the Cervical Venous System in Multiple Sclerosis. American Journal of Neuroradiology, 2011, 32, 1482-1489.	1.2	46
66	Arterial Spin Labeling Imaging Findings in Transient Ischemic Attack Patients: Comparison with Diffusion- and Bolus Perfusion-Weighted Imaging. Cerebrovascular Diseases, 2012, 34, 221-228.	0.8	46
67	Patients With the Malignant Profile Within 3 Hours of Symptom Onset Have Very Poor Outcomes After Intravenous Tissue-Type Plasminogen Activator Therapy. Stroke, 2012, 43, 2494-2496.	1.0	46
68	Is All Perfusion-Weighted Magnetic Resonance Imaging for Stroke Equal? The Temporal Evolution of Multiple Hemodynamic Parameters After Focal Ischemia in Rats Correlated With Evidence of Infarction. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1341-1351.	2.4	45
69	Association of Developmental Venous Anomalies with Perfusion Abnormalities on Arterial Spin Labeling and Bolus Perfusionâ€Weighted Imaging. Journal of Neuroimaging, 2015, 25, 243-250.	1.0	45
70	Striatal dopamine deficits predict reductions in striatal functional connectivity in major depression: a concurrent 11C-raclopride positron emission tomography and functional magnetic resonance imaging investigation. Translational Psychiatry, 2018, 8, 264.	2.4	44
71	Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2700-2707.	3.3	44
72	Ischemic Core and Hypoperfusion Volumes Correlate With Infarct Size 24 Hours After Randomization in DEFUSE 3. Stroke, 2019, 50, 626-631.	1.0	43

#	Article	IF	CITATIONS
73	Automated Perfusion Imaging for the Evaluation of Transient Ischemic Attack. Stroke, 2012, 43, 1556-1560.	1.0	41
74	Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Stroke, 2021, 52, 2328-2337.	1.0	41
75	Monitoring Cerebrovascular Reactivity through the Use of Arterial Spin Labeling in Patients with Moyamoya Disease. Radiology, 2016, 278, 205-213.	3.6	40
76	Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke. Stroke, 2020, 51, 489-497.	1.0	39
77	Assessment and modulation of resting-state neural networks after stroke. Current Opinion in Neurology, 2014, 27, 637-643.	1.8	38
78	Advanced Neuroimaging of Acute Ischemic Stroke. Neuroimaging Clinics of North America, 2018, 28, 585-597.	0.5	38
79	Identifying Hypoperfusion in Moyamoya Disease With Arterial Spin Labeling and an [¹⁵ O]-Water Positron Emission Tomography/Magnetic Resonance Imaging Normative Database. Stroke, 2019, 50, 373-380.	1.0	38
80	Noninvasive Imaging of Quantitative Cerebral Blood Flow Changes during 100% Oxygen Inhalation Using Arterial Spin-Labeling MR Imaging. American Journal of Neuroradiology, 2008, 29, 663-667.	1.2	37
81	Cerebral blood flow, transit time, and apparent diffusion coefficient in moyamoya disease before and after acetazolamide. Neuroradiology, 2017, 59, 5-12.	1.1	37
82	Arterial Spin-Labeling Improves Detection of Intracranial Dural Arteriovenous Fistulas with MRI. American Journal of Neuroradiology, 2018, 39, 669-677.	1.2	37
83	MRI safety and devices: An update and expert consensus. Journal of Magnetic Resonance Imaging, 2020, 51, 657-674.	1.9	37
84	Tau PET imaging with 18F-PI-2620 in aging and neurodegenerative diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2233-2244.	3.3	37
85	Quantification of brain oxygen extraction and metabolism with [150]-gas PET: A technical review in the era of PET/MRI. NeuroImage, 2020, 220, 117136.	2.1	36
86	Comparison of R2′ measurement methods in the normal brain at 3 tesla. Magnetic Resonance in Medicine, 2015, 73, 1228-1236.	1.9	35
87	Clinical Evaluation of Silent T1-Weighted MRI and Silent MR Angiography of the Brain. American Journal of Roentgenology, 2018, 210, 404-411.	1.0	35
88	Biodistribution and Radiation Dosimetry of ¹⁸ F-FTC-146 in Humans. Journal of Nuclear Medicine, 2017, 58, 2004-2009.	2.8	34
89	Low-count whole-body PET with deep learning in a multicenter and externally validated study. Npj Digital Medicine, 2021, 4, 127.	5.7	34
90	Angiographic Outcome of Endovascular Stroke Therapy Correlated with MR Findings, Infarct Growth, and Clinical Outcome in the DEFUSE 2 Trial. International Journal of Stroke, 2014, 9, 860-865.	2.9	32

#	Article	IF	CITATIONS
91	Amplified magnetic resonance imaging (aMRI). Magnetic Resonance in Medicine, 2016, 75, 2245-2254.	1.9	32
92	Evolution of Volume and Signal Intensity on Fluid-attenuated Inversion Recovery MR Images after Endovascular Stroke Therapy. Radiology, 2016, 280, 184-192.	3.6	32
93	Acute Preoperative Infarcts and Poor Cerebrovascular Reserve Are Independent Risk Factors for Severe Ischemic Complications following Direct Extracranial-Intracranial Bypass for Moyamoya Disease. American Journal of Neuroradiology, 2016, 37, 228-235.	1.2	31
94	Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study. Npj Digital Medicine, 2021, 4, 33.	5.7	31
95	Synthesize High-Quality Multi-Contrast Magnetic Resonance Imaging From Multi-Echo Acquisition Using Multi-Task Deep Generative Model. IEEE Transactions on Medical Imaging, 2020, 39, 3089-3099.	5.4	31
96	Spontaneous BOLD Signal Fluctuations in Young Healthy Subjects and Elderly Patients with Chronic Kidney Disease. PLoS ONE, 2014, 9, e92539.	1.1	31
97	Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: A xenon computed tomographic comparative study. Journal of Magnetic Resonance Imaging, 2009, 30, 743-752.	1.9	30
98	Predicting ¹⁵ O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2240-2253.	2.4	30
99	A generic deep learning model for reduced gadolinium dose in contrastâ€enhanced brain MRI. Magnetic Resonance in Medicine, 2021, 86, 1687-1700.	1.9	30
100	Quantitative MR estimates of blood oxygenation based on <i>T</i> ₂ *: A numerical study of the impact of model assumptions. Magnetic Resonance in Medicine, 2012, 67, 1458-1468.	1.9	29
101	Arterial Spin Labeling for Acute Stroke: Practical Considerations. Translational Stroke Research, 2012, 3, 228-235.	2.3	29
102	Generalization of deep learning models for ultra-low-count amyloid PET/MRI using transfer learning. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2998-3007.	3.3	29
103	Cerebrovascular reactivity measurements using simultaneous 15O-water PET and ASL MRI: Impacts of arterial transit time, labeling efficiency, and hematocrit. NeuroImage, 2021, 233, 117955.	2.1	28
104	True ultra-low-dose amyloid PET/MRI enhanced with deep learning for clinical interpretation. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2416-2425.	3.3	27
105	Velocityâ€selective arterial spin labeling perfusion MRI: A review of the state of the art and recommendations for clinical implementation. Magnetic Resonance in Medicine, 2022, 88, 1528-1547.	1.9	27
106	Urinary Oxygen Tension Measurement in Humans Using Magnetic Resonance Imaging. Academic Radiology, 2008, 15, 1467-1473.	1.3	26
107	Improvements in PET Image Quality in Time of Flight (TOF) Simultaneous PET/MRI. Molecular Imaging and Biology, 2016, 18, 776-781.	1.3	26
108	Contralateral Hemispheric Cerebral Blood Flow Measured With Arterial Spin Labeling Can Predict Outcome in Acute Stroke. Stroke, 2019, 50, 3408-3415.	1.0	26

#	Article	IF	CITATIONS
109	Comparing accuracy and reproducibility of sequential and Hadamardâ€encoded multidelay pseudocontinuous arterial spin labeling for measuring cerebral blood flow and arterial transit time in healthy subjects: A simulation and in vivo study. Journal of Magnetic Resonance Imaging, 2018, 47, 1119-1132.	1.9	25
110	Advantages of short repetition time resting-state functional MRI enabled by simultaneous multi-slice imaging. Journal of Neuroscience Methods, 2019, 311, 122-132.	1.3	25
111	Deep Learning Enables 60% Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial. American Journal of Neuroradiology, 2021, 42, 2130-2137.	1.2	25
112	Imaging of cerebrovascular reserve and oxygenation in Moyamoya disease. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1213-1222.	2.4	24
113	Resting-State BOLD MRI for Perfusion and Ischemia. Topics in Magnetic Resonance Imaging, 2017, 26, 91-96.	0.7	24
114	Predicting PET Cerebrovascular Reserve with Deep Learning by Using Baseline MRI: A Pilot Investigation of a Drug-Free Brain Stress Test. Radiology, 2020, 296, 627-637.	3.6	24
115	Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Seminars in Nuclear Medicine, 2021, 51, 134-142.	2.5	23
116	Deep learning–based methods may minimize GBCA dosage in brain MRI. European Radiology, 2021, 31, 6419-6428.	2.3	23
117	Pseudocontinuous arterial spin labeling with prospective motion correction (PCASL-PROMO). Magnetic Resonance in Medicine, 2014, 72, 1049-1056.	1.9	22
118	Ultrahigh-Resolution Imaging of the Human Brain with Phase-Cycled Balanced Steady-State Free Precession at 7 T. Investigative Radiology, 2014, 49, 278-289.	3.5	21
119	TIA Triage in Emergency Department Using Acute MRI (TIA-TEAM): A Feasibility and Safety Study. International Journal of Stroke, 2015, 10, 343-347.	2.9	21
120	Simultaneous phaseâ€contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. Journal of Magnetic Resonance Imaging, 2020, 51, 183-194.	1.9	21
121	Clinical evaluation of TOF versus non-TOF on PET artifacts in simultaneous PET/MR: a dual centre experience. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1223-1233.	3.3	20
122	Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke. American Journal of Neuroradiology, 2021, 42, 1030-1037.	1.2	20
123	Recommended implementation of arterial spin″abeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 2015, 73, spcone.	1.9	19
124	Cerebral Blood Flow Changes in Glioblastoma Patients Undergoing Bevacizumab Treatment Are Seen in Both Tumor and Normal Brain. Neuroradiology Journal, 2015, 28, 112-119.	0.6	19
125	Erroneous Resting-State fMRI Connectivity Maps Due to Prolonged Arterial Arrival Time and How to Fix Them. Brain Connectivity, 2018, 8, 362-370.	0.8	19
126	Application of Deep Learning to Predict Standardized Uptake Value Ratio and Amyloid Status on ¹⁸ F-Florbetapir PET Using ADNI Data. American Journal of Neuroradiology, 2020, 41, 980-986.	1.2	19

#	Article	IF	CITATIONS
127	Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI. Radiology: Artificial Intelligence, 2022, 4, e210059.	3.0	19
128	Representation Disentanglement for Multi-modal Brain MRI Analysis. Lecture Notes in Computer Science, 2021, 12729, 321-333.	1.0	17
129	Reduced Intravoxel Incoherent Motion Microvascular Perfusion Predicts Delayed Cerebral Ischemia and Vasospasm After Aneurysm Rupture. Stroke, 2018, 49, 741-745.	1.0	16
130	Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100. American Journal of Neuroradiology, 2021, 42, 240-246.	1.2	16
131	Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: Insights from simultaneous PET/MRI. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1493-1506.	2.4	15
132	Comparison of stroke volume evolution on diffusion-weighted imaging and fluid-attenuated inversion recovery following endovascular thrombectomy. International Journal of Stroke, 2017, 12, 510-518.	2.9	14
133	Artificial Intelligence in Neuroradiology: Current Status and Future Directions. American Journal of Neuroradiology, 2020, 41, E52-E59.	1.2	14
134	Evaluation of Thick-Slab Overlapping MIP Images of Contrast-Enhanced 3D T1-Weighted CUBE for Detection of Intracranial Metastases: A Pilot Study for Comparison of Lesion Detection, Interpretation Time, and Sensitivity with Nonoverlapping CUBE MIP, CUBE, and Inversion-Recovery-Prepared Fast-Spoiled Gradient Recalled Brain Volume. American Journal of Neuroradiology 2018, 39, 1635-1642	1.2	12
135	Simultaneous FDG-PET/MRI detects hippocampal subfield metabolic differences in AD/MCI. Scientific Reports, 2020, 10, 12064.	1.6	12
136	Improving Ischemic Stroke Care With MRI and Deep Learning Artificial Intelligence. Topics in Magnetic Resonance Imaging, 2021, 30, 187-195.	0.7	12
137	Hypoxia Detection in Infiltrative Astrocytoma: Ferumoxytol-based Quantitative BOLD MRI with Intraoperative and Histologic Validation. Radiology, 2018, 288, 821-829.	3.6	11
138	Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight. Neuroradiology, 2021, 63, 1271-1281.	1.1	11
139	Better Late than Never. Stroke, 2012, 43, 931-932.	1.0	10
140	Measurement of changes in cerebral blood volume in spontaneously hypertensive rats following L-arginine Infusion using dynamic susceptibility contrast MRI. Magnetic Resonance in Medicine, 1998, 39, 160-163.	1.9	9
141	Clinical and Arterial Spin Labeling Brain MRI Features of Transitional Venous Anomalies. Journal of Neuroimaging, 2018, 28, 289-300.	1.0	9
142	Deep flow-net for EPI distortion estimation. NeuroImage, 2020, 217, 116886.	2.1	9
143	Optimizing the frame duration for dataâ€driven rigid motion estimation in brain PET imaging. Medical Physics, 2021, 48, 3031-3041.	1.6	9
144	Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12212.	1.8	9

#	Article	IF	CITATIONS
145	Reliability of arterial spin labeling derived cerebral blood flow in periventricular white matter. NeuroImage Reports, 2021, 1, 100063.	0.5	9
146	Reproducibility of cerebrovascular reactivity measurements: A systematic review of neuroimaging techniques [*] . Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 700-717.	2.4	9
147	Multimodality Evaluation of Dural Arteriovenous Fistula with CT Angiography, MR with Arterial Spin Labeling, and Digital Subtraction Angiography: Case Report. Journal of Neuroimaging, 2014, 24, 520-523.	1.0	8
148	Non-Relative Value Unit-Generating Activities Represent One-Fifth of Academic Neuroradiologist Productivity. American Journal of Neuroradiology, 2016, 37, 1206-1208.	1.2	8
149	The vast potential and bright future of neuroimaging. British Journal of Radiology, 2018, 91, 20170505.	1.0	8
150	Identifying cardiovascular risk factors that impact cerebrovascular reactivity: An ASL MRI study. Journal of Magnetic Resonance Imaging, 2020, 51, 734-747.	1.9	8
151	Arterial Transit Awesomeness. Radiology, 2020, 297, 661-662.	3.6	8
152	Nearâ€contiguous spin echo imaging using matchedâ€phase RF and its application in velocityâ€selective arterial spin labeling. Magnetic Resonance in Medicine, 2014, 71, 2043-2050.	1.9	7
153	¹⁸ F-FSPG PET/CT Imaging of System x _C [–] Transporter Activity in Patients with Primary and Metastatic Brain Tumors. Radiology, 2022, 303, 620-631.	3.6	7
154	Yield of CT perfusion for the evaluation of transient ischaemic attack. International Journal of Stroke, 2015, 10, 25-29.	2.9	6
155	Fellow in a Box: Combining AI and Domain Knowledge with Bayesian Networks for Differential Diagnosis in Neuroimaging. Radiology, 2020, 295, 638-639.	3.6	6
156	MRI pulse sequence integration for deepâ€learningâ€based brain metastases segmentation. Medical Physics, 2021, 48, 6020-6035.	1.6	6
157	Abstract 52: Results of DEFUSE 2: Imaging Endpoints. Stroke, 2012, 43, .	1.0	5
158	Improved multislice perfusion imaging with velocity-selective arterial spin labeling. Journal of Magnetic Resonance Imaging, 2015, 41, 1422-1431.	1.9	4
159	Semiquantitative Assessment of ¹⁸ F-FDG Uptake in the Normal Skeleton: Comparison Between PET/CT and Time-of-Flight Simultaneous PET/MRI. American Journal of Roentgenology, 2017, 209, 1136-1142.	1.0	4
160	Automated detection of arterial landmarks and vascular occlusions in patients with acute stroke receiving digital subtraction angiography using deep learning. Journal of NeuroInterventional Surgery, 2023, 15, 521-525.	2.0	4
161	Abstract 73: Results of DEFUSE 2: Clinical Endpoints. Stroke, 2012, 43, .	1.0	4
162	Magnetic Resonance Imaging as an Alternative to <scp>Contrastâ€Enhanced</scp> Computed Tomography to Mitigate Iodinated Contrast Shortages in the United States: Recommendations From the International Society for Magnetic Resonance in Medicine. Journal of Magnetic Resonance Imaging, 2022, 56, 655-656.	1.9	4

#	Article	IF	CITATIONS
163	Conspicuity of Malignant Lesions on PET/CT and Simultaneous Time-Of-Flight PET/MRI. PLoS ONE, 2017, 12, e0167262.	1.1	3
164	The bright vessel sign on arterial spin labeling MRI for heralding and localizing large vessel occlusions. Journal of Neuroimaging, 2021, 31, 925-930.	1.0	2
165	Kidney Disease, Hypertension Treatment, and Cerebral Perfusion and Structure. American Journal of Kidney Diseases, 2022, 79, 677-687.e1.	2.1	2
166	MR perfusion imaging in neurovascular disease. , 0, , 127-163.		1
167	Evaluation of Zero-TE-based attenuation correction methods on PET quantification of PET/MRI head and neck lesions. , 2016, , .		1
168	Evaluation of diagnostic accuracy in CT perfusion analysis in moyamoya disease. Japanese Journal of Radiology, 2016, 34, 28-34.	1.0	1
169	Benchmarking transverse spin relaxation based oxygenation measurements in the brain during hypercapnia and hypoxia. Journal of Magnetic Resonance Imaging, 2017, 46, 704-714.	1.9	1
170	Investigating Simultaneity for Deep Learning–Enhanced Actual Ultra-Low-Dose Amyloid PET/MR Imaging. American Journal of Neuroradiology, 2022, 43, 354-360.	1.2	1
171	MR-Guided Unfocused Ultrasound Disruption of the Rat Blood-Brain Barrier. , 2011, , .		Ο
172	Whole-body simultaneous time-of-flight PET-MRI: early experience with clinical studies. EJNMMI Physics, 2015, 2, A64.	1.3	0
173	Confirming Pathogenicity of the F386L <i>PSEN1</i> Variant in a South Asian Family With Early-Onset Alzheimer Disease. Neurology: Genetics, 2022, 8, e647.	0.9	Ο
174	Abstract 135: Correlation of TICI Reperfusion with MR Reperfusion, Infarct Growth and Clinical Outcome in the DEFUSE 2 Trial. Stroke, 2012, 43, .	1.0	0
175	Abstract 53: The Malignant MRI profile: Implications for Endovascular Therapy. Stroke, 2012, 43, .	1.0	0
176	Image synthesis for low-count PET acquisitions: lower dose, shorter time. , 2022, , 369-391.		0