E Nadal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3740190/publications.pdf

Version: 2024-02-01

933447 839539 38 375 10 18 citations h-index g-index papers 42 42 42 370 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Improvement in 3D topology optimization with <i>h</i> â€edaptive refinement using the Cartesian grid Finite Element Method. International Journal for Numerical Methods in Engineering, 2022, 123, 3045-3072.	2.8	4
2	Computer modeling of radiofrequency cardiac ablation including heartbeat-induced electrode displacement. Computers in Biology and Medicine, 2022, 144, 105346.	7.0	9
3	Allying topology and shape optimization through machine learning algorithms. Finite Elements in Analysis and Design, 2022, 204, 103719.	3.2	5
4	Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework. Sensors, 2021, 21, 3943.	3.8	2
5	Highâ€order discontinuous Galerkin method for timeâ€domain electromagnetics on geometryâ€independent Cartesian meshes. International Journal for Numerical Methods in Engineering, 2021, 122, 7632-7663.	2.8	1
6	Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD). Mathematics, 2021, 9, 34.	2.2	1
7	Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. Computer Methods and Programs in Biomedicine, 2020, 195, 105673.	4.7	10
8	A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition. Mathematics, 2020, 8, 2245.	2.2	7
9	Topology and shape optimization of dissipative and hybrid mufflers. Structural and Multidisciplinary Optimization, 2020, 62, 269-284.	3.5	9
10	On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers. International Journal for Numerical Methods in Engineering, 2020, 121, 3004-3020.	2.8	5
11	Optimized Perforation Schemes in Railway Wheels Toward Acoustic Radiation Mitigation. Journal of Vibration and Acoustics, Transactions of the ASME, 2020, 142, .	1.6	2
12	ASSESSMENT OF THE USE OF TECHNICAL SOFTWARE BY THE STUDENTS IN THE CONTEXT OF MECHANICAL ENGINEERING. , 2020, , .		0
13	Evaluation of hip fracture risk using a hyper-parametric model based on the Locally Linear Embedding technique. Comptes Rendus - Mecanique, 2019, 347, 856-862.	2.1	5
14	3D Topology Optimization with h-adaptive Refinement Using Cartesian Grids Finite Element Method (cgFEM)., 2019,, 778-788.		2
15	Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection. Structural and Multidisciplinary Optimization, 2018, 58, 61-81.	3.5	2
16	On the physical interpretation of fractional diffusion. Comptes Rendus - Mecanique, 2018, 346, 581-589.	2.1	10
17	Computational performance of analytical methods for the acoustic modelling of automotive exhaust devices incorporating monoliths. Journal of Computational and Applied Mathematics, 2018, 330, 995-1006.	2.0	8
18	Proper generalized decomposition solutions within a domain decomposition strategy. International Journal for Numerical Methods in Engineering, 2018, 113, 1972-1994.	2.8	17

#	Article	IF	CITATIONS
19	An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics, 2018, 56, 1162-1186.	3.7	30
20	Estimating the Relative Stiffness between a Hepatic Lesion and the Liver Parenchyma through Biomechanical Simulations of the Breathing Process. Mathematical Problems in Engineering, 2018, 2018, 1-10.	1.1	0
21	Estimating the Patient-Specific Relative Stiffness Between a Hepatic Lesion and the Liver Parenchyma. Lecture Notes in Computational Vision and Biomechanics, 2018, , 485-494.	0.5	1
22	Stress-Based Femur Fracture Risk Evaluation from Bone Densitometry. Lecture Notes in Computational Vision and Biomechanics, 2018, , 645-649.	0.5	0
23	Fast simulation of the pantograph–catenary dynamic interaction. Finite Elements in Analysis and Design, 2017, 129, 1-13.	3.2	38
24	A physically-based fractional diffusion model for semi-dilute suspensions of rods in a Newtonian fluid. Applied Mathematical Modelling, 2017, 51, 58-67.	4.2	7
25	ASSESSMENT OF GENERIC COMPETENCES IN MECHANICAL ENGINEERING AND MATERIALS SCIENCE SUBJECTS: A PROPOSAL OF EVALUATION METHODOLOGIES. INTED Proceedings, 2017, , .	0.0	O
26	Simulación estructural de espumas de aluminio a partir de imágenes 2D mediante la combinación de técnicas de homogeneización y machine learning. Revista UIS IngenierÃas, 2017, 17, 223-240.	0.2	2
27	Parametric model for the simulation of the railway catenary system static equilibrium problem. Finite Elements in Analysis and Design, 2016, 115, 21-32.	3.2	9
28	Fundaments of Recovery-Based Error Estimation and Bounding. SpringerBriefs in Applied Sciences and Technology, 2016, , 33-57.	0.4	0
29	High-resolution thermal analysis at thermoplastic pre-impregnated acomposite interfaces. Composite Interfaces, 2015, 22, 767-777.	2.3	14
30	A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 2015, 287, 172-190.	6.6	9
31	Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method. Computers and Structures, 2015, 152, 1-10.	4.4	30
32	A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework. Computational Mechanics, 2015, 55, 251-266.	4.0	12
33	Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition. Computer Methods in Applied Mechanics and Engineering, 2015, 296, 113-128.	6.6	19
34	Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 2014, 98, 399-417.	2.8	14
35	Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 2014, 53, 957-976.	4.0	40
36	Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 2013, 1-19.	0.7	45

#	Article	IF	CITATIONS
37	Dise $\tilde{A}\pm o$ de actividades y uso de la coevaluaci \tilde{A}^3 n para fomentar el desarrollo de competencias transversales en ingenier \tilde{A} a mec \tilde{A}_i nica y de materiales. , 0, , .		0
38	Accurate Stress Recovery for the Two-Dimensional Fixed Grid Finite Element Method., 0,,.		2