Jorma Keskinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3739979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrical low pressure impactor. Journal of Aerosol Science, 1992, 23, 353-360.	3.8	518
2	PERFORMANCE EVALUATION OF THE ELECTRICAL LOW-PRESSURE IMPACTOR (ELPI). Journal of Aerosol Science, 2000, 31, 249-261.	3.8	331
3	Nucleation Mode Particles with a Nonvolatile Core in the Exhaust of a Heavy Duty Diesel Vehicle. Environmental Science & Technology, 2007, 41, 6384-6389.	10.0	216
4	Effect of dilution conditions and driving parameters on nucleation mode particles in diesel exhaust: Laboratory and on-road study. Atmospheric Environment, 2006, 40, 2893-2901.	4.1	177
5	Traffic is a major source of atmospheric nanocluster aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7549-7554.	7.1	171
6	Nucleation Mode Formation in Heavy-Duty Diesel Exhaust with and without a Particulate Filter. Environmental Science & Technology, 2004, 38, 4884-4890.	10.0	163
7	Exhaust particles of modern gasoline vehicles: A laboratory and an on-road study. Atmospheric Environment, 2014, 97, 262-270.	4.1	145
8	"Snifferâ€â€"a novel tool for chasing vehicles and measuring traffic pollutants. Atmospheric Environment, 2004, 38, 3625-3635.	4.1	136
9	Calibration of the new electrical low pressure impactor (ELPI+). Journal of Aerosol Science, 2014, 69, 150-159.	3.8	124
10	Dispersion of particles and trace gases nearby a city highway: Mobile laboratory measurements in Finland. Atmospheric Environment, 2006, 40, 867-879.	4.1	115
11	Characteristics of the liquid flame spray process. Surface and Coatings Technology, 1997, 90, 210-216.	4.8	113
12	Effect of Lubricant on the Formation of Heavy-Duty Diesel Exhaust Nanoparticles. Environmental Science & Technology, 2005, 39, 8497-8504.	10.0	111
13	Sampling Conditions for the Measurement of Nucleation Mode Particles in the Exhaust of a Diesel Vehicle. Aerosol Science and Technology, 2004, 38, 1149-1160.	3.1	110
14	Effect of Engine Load on Diesel Soot Particles. Environmental Science & Technology, 2004, 38, 2551-2556.	10.0	103
15	On-line measurement of size distribution and effective density of submicron aerosol particles. Journal of Aerosol Science, 2002, 33, 1541-1557.	3.8	100
16	Spatial and temporal characterization of traffic emissions in urban microenvironments with a mobile laboratory. Atmospheric Environment, 2012, 63, 156-167.	4.1	100
17	The formation and physical properties of the particle emissions from a natural gas engine. Fuel, 2015, 162, 155-161.	6.4	98
18	Bounce behavior of freshly nucleated biogenic secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2011, 11, 8759-8766.	4.9	92

#	Article	IF	CITATIONS
19	Generation of metal and metal oxide nanoparticles by liquid flame spray process. Journal of Materials Science, 2004, 39, 2783-2788.	3.7	83
20	Method for Measuring Effective Density and Fractal Dimension of Aerosol Agglomerates. Aerosol Science and Technology, 2004, 38, 437-446.	3.1	82
21	Winter and summer time size distributions and densities of traffic-related aerosol particles at a busy highway in Helsinki. Atmospheric Chemistry and Physics, 2006, 6, 2411-2421.	4.9	81
22	First Online Measurements of Sulfuric Acid Gas in Modern Heavy-Duty Diesel Engine Exhaust: Implications for Nanoparticle Formation. Environmental Science & Technology, 2012, 46, 11227-11234.	10.0	78
23	Vehicle Engines Produce Exhaust Nanoparticles Even When Not Fueled. Environmental Science & Technology, 2014, 48, 2043-2050.	10.0	77
24	Fine particle losses in electrical low-pressure impactor. Journal of Aerosol Science, 2001, 32, 389-401.	3.8	76
25	Can Real-World Diesel Exhaust Particle Size Distribution be Reproduced in the Laboratory? A Critical Review Jorma Keskinen. Journal of the Air and Waste Management Association, 2010, 60, 1245-1255.	1.9	76
26	Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car. Atmospheric Chemistry and Physics, 2016, 16, 8559-8570.	4.9	76
27	Effects of Gaseous Sulphuric Acid on Diesel Exhaust Nanoparticle Formation and Characteristics. Environmental Science & Technology, 2013, 47, 11882-11889.	10.0	74
28	Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements. Environmental Science & Technology, 2009, 43, 163-168.	10.0	70
29	Effects of Fresh Lubricant Oils on Particle Emissions Emitted by a Modern Gasoline Direct Injection Passenger Car. Environmental Science & Technology, 2015, 49, 3644-3652.	10.0	70
30	Lung deposited surface area size distributions of particulate matter in different urban areas. Atmospheric Environment, 2016, 136, 105-113.	4.1	67
31	Comparison of mobility equivalent diameter with Kelvinâ€Thomson diameter using ion mobility data. Journal of Chemical Physics, 1996, 105, 1562-1571.	3.0	65
32	Effect of Oxidation Catalysts on Diesel Soot Particles. Environmental Science & Technology, 2006, 40, 4776-4781.	10.0	63
33	Improving the Nanoparticle Resolution of the ELPI. Aerosol and Air Quality Research, 2010, 10, 360-366.	2.1	62
34	ELPI Response and Data Reduction I: Response Functions. Aerosol Science and Technology, 2005, 39, 575-582.	3.1	60
35	Chemical composition and size of particles in emissions of a coal-fired power plant with flue gas desulfurization. Journal of Aerosol Science, 2014, 73, 14-26.	3.8	58
36	Dependence between Nonvolatile Nucleation Mode Particle and Soot Number Concentrations in an EGR Equipped Heavy-Duty Diesel Engine Exhaust. Environmental Science & Technology, 2010, 44, 3175-3180.	10.0	57

#	Article	IF	CITATIONS
37	Infant and Adult Inhalation Exposure to Resuspended Biological Particulate Matter. Environmental Science & Technology, 2018, 52, 237-247.	10.0	57
38	Ash formation during fluidized-bed incineration of paper mill waste sludge. Journal of Aerosol Science, 1998, 29, 461-480.	3.8	55
39	Influence of fuel ethanol content on primary emissions and secondary aerosol formation potential for a modern flex-fuel gasoline vehicle. Atmospheric Chemistry and Physics, 2017, 17, 5311-5329.	4.9	55
40	Effect of Open Channel Filter on Particle Emissions of Modern Diesel Engine. Journal of the Air and Waste Management Association, 2009, 59, 1148-1154.	1.9	54
41	Use of a corona charger for the characterisation of automotive exhaust aerosol. Journal of Aerosol Science, 2004, 35, 943-963.	3.8	53
42	Mode resolved density of atmospheric aerosol particles. Atmospheric Chemistry and Physics, 2008, 8, 5327-5337.	4.9	52
43	Nanoparticle Emissions from a Heavy-Duty Engine Running on Alternative Diesel Fuels. Environmental Science & Technology, 2009, 43, 9501-9506.	10.0	51
44	Particle emissions characterization from a medium-speed marine diesel engine with two fuels at different sampling conditions. Fuel, 2016, 186, 456-465.	6.4	48
45	Development of particle number size distribution near a major road in Helsinki during an episodic inversion situation. Atmospheric Environment, 2007, 41, 1759-1767.	4.1	47
46	Hydrocarbon Condensation in Heavy-Duty Diesel Exhaust. Environmental Science & Technology, 2007, 41, 6397-6402.	10.0	46
47	Effect of Fuel Injection Pressure on a Heavy-Duty Diesel Engine Nonvolatile Particle Emission. Environmental Science & Technology, 2011, 45, 2504-2509.	10.0	46
48	Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon. Environmental Pollution, 2018, 241, 96-105.	7.5	46
49	Mobility distribution of acetone cluster ions. Journal of Aerosol Science, 1996, 27, 175-190.	3.8	44
50	Titania and titania-silver nanoparticle deposits made by Liquid Flame Spray and their functionality as photocatalyst for organic- and biofilm removal. Catalysis Letters, 2006, 111, 127-132.	2.6	44
51	Diesel exhaust emissions and particle hygroscopicity with HVO fuel-oxygenate blend. Fuel, 2013, 103, 380-386.	6.4	44
52	A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources. Atmospheric Measurement Techniques, 2017, 10, 1519-1537.	3.1	44
53	Simulation of low pressure impactor collection efficiency curves. Journal of Aerosol Science, 2011, 42, 329-340.	3.8	41
54	Reductions in Particulate and NO _{<i>x</i>} Emissions by Diesel Engine Parameter Adjustments with HVO Fuel. Environmental Science & Technology, 2012, 46, 6198-6204.	10.0	41

#	Article	IF	CITATIONS
55	Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow. Journal of Electrostatics, 1996, 38, 303-315.	1.9	40
56	Performance of Two Fluorescence-Based Real-Time Bioaerosol Detectors: BioScout vs. UVAPS. Aerosol Science and Technology, 2014, 48, 371-378.	3.1	40
57	Crawling-induced floor dust resuspension affects the microbiota of the infant breathing zone. Microbiome, 2018, 6, 25.	11.1	40
58	Towards traceable particle number concentration standard: Single charged aerosol reference (SCAR). Journal of Aerosol Science, 2010, 41, 719-728.	3.8	39
59	Cold Temperature PM Emissions Measurement:Â Method Evaluation and Application to Light Duty Vehicles. Environmental Science & Technology, 2005, 39, 9424-9430.	10.0	37
60	Electrical calibration method for cascade impactors. Journal of Aerosol Science, 1999, 30, 111-116.	3.8	36
61	The comparison of particle oxidation and surface structure of diesel soot particles between fossil fuel and novel renewable diesel fuel. Fuel, 2010, 89, 4008-4013.	6.4	35
62	Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmospheric Environment, 2013, 71, 202-209.	4.1	35
63	Physical and chemical characteristics of flue-gas particles in a large pulverized fuel-fired power plant boiler during co-combustion of coal and wood pellets. Combustion and Flame, 2017, 176, 554-566.	5.2	35
64	Generation of silver/palladium nanoparticles by liquid flame spray. Journal of Materials Research, 2004, 19, 1544-1550.	2.6	34
65	Atmospheric synthesis of superhydrophobic TiO2 nanoparticle deposits in a single step using Liquid Flame Spray. Journal of Aerosol Science, 2012, 52, 57-68.	3.8	34
66	Detection of Ni, Pb and Zn in water using electrodynamic single-particle levitation and laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 9-14.	2.9	34
67	Seasonal and Diurnal Variations of Fluorescent Bioaerosol Concentration and Size Distribution in the Urban Environment. Aerosol and Air Quality Research, 2015, 15, 572-581.	2.1	33
68	Adjusting mobility scales of ion mobility spectrometers using 2,6-DtBP as a reference compound. Talanta, 2008, 76, 1218-1223.	5.5	31
69	Shipping Remains a Globally Significant Source of Anthropogenic PN Emissions Even after 2020 Sulfur Regulation. Environmental Science & Technology, 2021, 55, 129-138.	10.0	31
70	Physical Characteristics of Particle Emissions from a Medium Speed Ship Engine Fueled with Natural Gas and Low-Sulfur Liquid Fuels. Environmental Science & Technology, 2020, 54, 5376-5384.	10.0	30
71	Effect of impaction plate roughness and porosity on collection efficiency. Journal of Aerosol Science, 2004, 35, 301-308.	3.8	29
72	The ELPI Response and Data Reduction II: Properties of Kernels and Data Inversion. Aerosol Science and Technology, 2005, 39, 583-595.	3.1	28

#	Article	IF	CITATIONS
73	Computation of maximum rate of water–sulphuric acid nucleation in diesel exhaust. Journal of Aerosol Science, 2006, 37, 1596-1604.	3.8	28
74	Comparison of Three Particle Number Concentration Calibration Standards Through Calibration of a Single CPC in a Wide Particle Size Range. Aerosol Science and Technology, 2012, 46, 1163-1173.	3.1	27
75	Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions. Atmospheric Environment, 2016, 126, 136-144.	4.1	27
76	A new method for characterizing the bounce and charge transfer properties of nanoparticles. Journal of Aerosol Science, 2013, 55, 104-115.	3.8	26
77	Release and characteristics of fungal fragments in various conditions. Science of the Total Environment, 2016, 547, 234-243.	8.0	26
78	Comparative performance of a thermal denuder and a catalytic stripper in sampling laboratory and marine exhaust aerosols. Aerosol Science and Technology, 2018, 52, 420-432.	3.1	26
79	The Effect of Sulphur in Diesel Exhaust Aerosol: Models Compared with Measurements. Aerosol Science and Technology, 2008, 42, 916-929.	3.1	25
80	Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption. Environmental Science & Technology, 2016, 50, 12504-12511.	10.0	25
81	High-resolution low-pressure cascade impactor. Journal of Aerosol Science, 2014, 78, 97-109.	3.8	24
82	Identification of single microbial particles using electro-dynamic balance assisted laser-induced breakdown and fluorescence spectroscopy. Aerosol Science and Technology, 2016, 50, 126-132.	3.1	24
83	Mobile Particle and NOx Emission Characterization at Helsinki Downtown: Comparison of Different Traffic Flow Areas. Aerosol and Air Quality Research, 2014, 14, 1372-1382.	2.1	24
84	Instrumentation for measuring fluorescence cross sections from airborne microsized particles. Applied Optics, 2008, 47, 110.	2.1	23
85	Fluorescence cross sections of bioaerosols and suspended biological agents. Applied Optics, 2009, 48, 4320.	2.1	23
86	Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine. Journal of the Air and Waste Management Association, 2012, 62, 1305-1312.	1.9	23
87	First comprehensive inter-comparison of aerosol electrometers for particle sizes up to 200 nm and concentration range 1000 cm ^{â^'3} to 17 000 cm ^{â^'3} . Metrologia, 2014, 51, 293-303	8. ^{1.2}	22
88	Heavy-duty, off-road diesel engine low-load particle number emissions and particle control. Journal of the Air and Waste Management Association, 2014, 64, 1186-1194.	1.9	22
89	Optimization of filtration efficiency and ozone production of the electrostatic precipitator. Journal of Aerosol Science, 1986, 17, 622-626.	3.8	21
90	Liquid Flame Spraying for Glass Coloring. Journal of Thermal Spray Technology, 1999, 8, 583-589.	3.1	20

#	Article	IF	CITATIONS
91	Spray Charging of Droplets in a Wet Scrubber. Journal of the Air and Waste Management Association, 2002, 52, 175-180.	1.9	20
92	Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics. Atmospheric Chemistry and Physics, 2017, 17, 8739-8755.	4.9	20
93	Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores. Indoor Air, 2015, 25, 653-661.	4.3	19
94	Virtual Impactor as an Accessory to Optical Particle Counters. Aerosol Science and Technology, 1987, 6, 79-83.	3.1	18
95	Bipolar Charge Analyzer (BOLAR): A new aerosol instrument for bipolar charge measurements. Journal of Aerosol Science, 2014, 77, 16-30.	3.8	18
96	Experimental study of the effect of temperature on ion cluster formation using ion mobility spectrometry. Atmospheric Research, 2008, 90, 115-124.	4.1	17
97	Characterization and Response Model of the PPS-M Aerosol Sensor. Aerosol Science and Technology, 2014, 48, 1022-1030.	3.1	17
98	New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning. Atmospheric Chemistry and Physics, 2016, 16, 7485-7496.	4.9	17
99	Size Distribution, Chemical Composition, and Hygroscopicity of Fine Particles Emitted from an Oil-Fired Heating Plant. Environmental Science & amp; Technology, 2013, 47, 14468-14475.	10.0	16
100	Sulfur Driven Nucleation Mode Formation in Diesel Exhaust under Transient Driving Conditions. Environmental Science & Technology, 2014, 48, 140206134439008.	10.0	16
101	Monitoring urban air quality with a diffusion charger based electrical particle sensor. Urban Climate, 2015, 14, 441-456.	5.7	16
102	Reduction of Heavy-Duty Diesel Exhaust Particle Number and Mass at Low Exhaust Temperature Driving by the DOC and the SCR. SAE International Journal of Fuels and Lubricants, 0, 5, 1114-1122.	0.2	15
103	Optical and Chemical Characterization of Aerosols Emitted from Coal, Heavy and Light Fuel Oil, and Small-Scale Wood Combustion. Environmental Science & Technology, 2014, 48, 827-836.	10.0	15
104	Phase State and Deliquescence Hysteresis of Ammonium-Sulfate-Seeded Secondary Organic Aerosol. Aerosol Science and Technology, 2015, 49, 531-537.	3.1	15
105	Non-Collecting Electrical Sensor for Particle Concentration Measurement. Aerosol and Air Quality Research, 2009, 9, 470-477.	2.1	15
106	Liquid flame spray for generating metal and metal oxide nanoparticle test aerosol. Human and Experimental Toxicology, 2009, 28, 421-431.	2.2	14
107	Validating the single charged aerosol reference (SCAR) as a traceable particle number concentration standard for 10 nm to 500 nm aerosol particles. Metrologia, 2011, 48, 426-436.	1.2	14
108	Modification of the ELPI to measure mean particle effective density in real-time. Journal of Aerosol Science, 2009, 40, 823-831.	3.8	13

#	Article	IF	CITATIONS
109	The critical velocity of rebound determined for sub-micron silver particles with a variable nozzle area impactor. Journal of Aerosol Science, 2015, 86, 32-43.	3.8	13
110	Fluorescence properties of biochemicals in dry NaCl composite aerosol particles and in solutions. Applied Physics B: Lasers and Optics, 2010, 99, 841-851.	2.2	12
111	Study of the PM Gas-Phase Filter Artifact Using a Setup for Mixing Diesel-Like Soot and Hydrocarbons. Aerosol Science and Technology, 2012, 46, 1045-1052.	3.1	12
112	Particle charge-size distribution measurement using a differential mobility analyzer and an electrical low pressure impactor. Aerosol Science and Technology, 2017, 51, 20-29.	3.1	12
113	Physical properties of aerosol particles measured from a bubbling fluidized bed boiler. Fuel, 2015, 139, 144-153.	6.4	11
114	Extending the Faraday cup aerosol electrometer based calibration method up to 5 µm. Aerosol Science and Technology, 2018, 52, 828-840.	3.1	11
115	Synthesis of Pd–alumina and Pd–lanthana Suspension for Catalytic Applications by One-step Liquid Flame Spray. Catalysis Letters, 2007, 119, 172-178.	2.6	10
116	Technical Note: Measuring condensation sink and ion sink of atmospheric aerosols with the electrical low pressure impactor (ELPI). Atmospheric Chemistry and Physics, 2010, 10, 1361-1368.	4.9	10
117	The influence of nozzle throat length on the resolution of a low pressure impactor—An experimental and numerical study. Journal of Aerosol Science, 2012, 53, 76-84.	3.8	10
118	Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels. SAE International Journal of Fuels and Lubricants, 0, 5, 611-619.	0.2	10
119	Radon decay product attachment rates in dwellings. Journal of Aerosol Science, 1991, 22, 765-771.	3.8	9
120	Estimation of the cutpoint of an impactor with porous substrates. Journal of Aerosol Science, 2004, 35, 657-663.	3.8	8
121	Effect of Exhaust Flow Conditions and External Cooling on the Performance of the Particle Oxidation Catalyst (POC). , 0, , .		7
122	The effect of materials and obliquity of the impact on the critical velocity of rebound. Aerosol Science and Technology, 2017, 51, 301-310.	3.1	7
123	The control of radon progeny by air treatment devices. Science of the Total Environment, 1985, 45, 493-498.	8.0	6
124	Small ion concentration in houses with enhanced radon concentration. Environment International, 1989, 15, 309-313.	10.0	6
125	Continuous monitoring of air impurities in dwellings. Environment International, 1989, 15, 557-562.	10.0	6
126	Mass Measurement of Non-Spherical Particles: TDMA-ELPI Setup and Performance Tests. Aerosol Science and Technology, 2006, 40, 997-1001.	3.1	6

#	Article	IF	CITATIONS
127	Effect of Injection Parameters on Exhaust Gaseous and Nucleation Mode Particle Emissions of a Tier 4i Nonroad Diesel Engine. , 0, , .		6
128	Improving the signal-to-noise ratio of Faraday cup aerosol electrometer based aerosol instrument calibrations. Aerosol Science and Technology, 2016, 50, 373-379.	3.1	6
129	Triboelectric charging of fungal spores during resuspension and rebound. Aerosol Science and Technology, 2016, 50, 187-197.	3.1	6
130	A New Miniaturized Sensor for Ultra-Fast On-Board Soot Concentration Measurements. SAE International Journal of Engines, 2017, 10, 1859-1865.	0.4	6
131	Aerosol formation caused by electrostatic precipitator. Journal of Aerosol Science, 1986, 17, 647-649.	3.8	5
132	Real-time effective density monitor (DENSMO) for aerosol nanoparticle production. Aerosol Science and Technology, 2016, 50, 487-496.	3.1	5
133	Performance of a sonic jet-type charger in high dust load. Journal of Electrostatics, 2016, 83, 1-6.	1.9	5
134	Optical chamber design for aerosol particle fluorescent measurement. , 2006, 6398, 88.		4
135	Impact of Vehicle Development and Fuel Quality on Exhaust Nanoparticle Emissions of Traffic. Environmental Science & Technology, 2013, 47, 130715120557004.	10.0	4
136	The Effect of a Particle Oxidation Catalyst (POC®) on Particle Emissions of a GDI Car during Transient Engine Operation. , 2013, , .		4
137	Aerosol gas exchange system (AGES) for nanoparticle sampling at elevated temperatures: Modeling and experimental characterization. Scientific Reports, 2019, 9, 17149.	3.3	3
138	Differential diffusion analyzer. Aerosol Science and Technology, 2017, 51, 1429-1437.	3.1	3
139	A Method of Modifying the Sensitivity Function of an Aerosol Photometer. AIHA Journal, 1988, 49, 396-400.	0.4	1
140	Low pressure impactor with electrical concentration detection. Journal of Aerosol Science, 1991, 22, S285.	3.8	0
141	Combined electrical and optical detectionin continuous mass monitoring. Journal of Aerosol Science, 1991, 22, S367-S370.	3.8	0