
Jianshe Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3739861/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	High Sensitivity of Refractive Index Sensor Based on Analyte-Filled Photonic Crystal Fiber With Surface Plasmon Resonance. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	116
2	Tunable Fiber Polarization Filter by Filling Different Index Liquids and Gold Wire Into Photonic Crystal Fiber. Journal of Lightwave Technology, 2016, 34, 2484-2490.	4.6	53
3	Surface Plasmon Resonance Induced High Sensitivity Temperature and Refractive Index Sensor Based on Evanescent Field Enhanced Photonic Crystal Fiber. Journal of Lightwave Technology, 2020, 38, 919-928.	4.6	53
4	Magnetic Field Sensor Based on Magnetic Fluid Selectively Infilling Photonic Crystal Fibers. IEEE Photonics Technology Letters, 2015, 27, 717-720.	2.5	51
5	Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings. Journal Physics D: Applied Physics, 2018, 51, 305104.	2.8	40
6	Amphibious sensor of temperature and refractive index based on D-shaped photonic crystal fibre filled with liquid crystal. Liquid Crystals, 2020, 47, 882-894.	2.2	36
7	Polarization Splitter Based on d-Shaped Dual-Core Photonic Crystal Fibers with Gold Film. Plasmonics, 2015, 10, 57-61.	3.4	35
8	Broadband single-polarization filter of D-shaped photonic crystal fiber with a micro-opening based on surface plasmon resonance. Applied Optics, 2018, 57, 8016.	1.8	34
9	Numerical Analysis of Polarization Filter Characteristics of D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance. Plasmonics, 2015, 10, 675-680.	3.4	31
10	Highly sensitive sensor based on D-shaped microstructure fiber with hollow core. Optics and Laser Technology, 2020, 123, 105922.	4.6	30
11	Photonic Crystal Fiber Temperature Sensor Based on Coupling Between Liquid-Core Mode and Defect Mode. IEEE Photonics Journal, 2015, 7, 1-9.	2.0	29
12	Plasmonic Polarization Beam Splitter Based on Dual-Core Photonic Crystal Fiber. Plasmonics, 2015, 10, 1283-1289.	3.4	27
13	A Polarization Filter Based on Photonic Crystal Fiber with Asymmetry Around Gold-Coated Holes. Plasmonics, 2016, 11, 103-108.	3.4	27
14	Surface plasmon resonance sensor based on a D-shaped photonic crystal fiber for high and low refractive index detection. Optik, 2020, 212, 164697.	2.9	21
15	Experimental study on a high-sensitivity optical fiber sensor in wide-range refractive index detection. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 3063.	2.1	17
16	Surface Plasmon Induced Polarization Filter Based on Au Wires and Liquid Crystal Infiltrated Photonic Crystal Fibers. Plasmonics, 2016, 11, 459-464.	3.4	16
17	Photonic Crystal Fiber Polarization Filter Based on Surface Plasmon Polaritons. Plasmonics, 2016, 11, 65-69.	3.4	16
18	A sensor-compatible polarization filter based on photonic crystal fiber with dual-open-ring channel by surface plasmon resonance. Optik, 2019, 193, 162868.	2.9	16

JIANSHE LI

#	Article	IF	CITATIONS
19	Novel External Gold-Coated Side-Leakage Photonic Crystal Fiber for Tunable Broadband Polarization Filter. Journal of Lightwave Technology, 2021, 39, 1791-1799.	4.6	16
20	A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	14
21	Dual-polarized optical sensing of microstructure fiber with pentagonal-lattice based on surface plasmon resonance in the near-IR spectrum. Optik, 2020, 202, 163671.	2.9	14
22	Design and numerical analysis of a novel dual-polarized refractive index sensor based on D-shaped photonic crystal fiber. Metrologia, 2018, 55, 828-839.	1.2	13
23	Analysis of Double Peak Detection in a D-Shaped Photonic Crystal Fiber Plasmonic Sensor. Plasmonics, 2021, 16, 761-768.	3.4	13
24	High Sensitivity of Temperature Sensor Based on Ultracompact Photonics Crystal Fibers. IEEE Photonics Journal, 2014, 6, 1-6.	2.0	11
25	Photonic Crystal Fiber Polarization Filter Based on Coupling Between Core Mode and SPP Mode. Plasmonics, 2016, 11, 857-863.	3.4	11
26	Design of single-polarization single-mode photonic crystal fiber filter with four small holes near the core based on second-order and third-order surface plasmon polariton modes. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	7
27	High-Sensitivity Refractive Index Sensing and Broadband Tunable Polarization Filtering Characteristics of D-Shaped Micro-Structured Fiber With Single-Layer Air-Holes and Gold Film Based on SPR. Journal of Lightwave Technology, 2022, 40, 863-871.	4.6	7
28	High-sensitivity refractive index sensor with tunable detection range based on dual-core resonance effect in gold-coated photonic crystal fibers. Journal Physics D: Applied Physics, 2019, 52, 055106.	2.8	6
29	Soliton and Four-Wave Mixing Effects Induced by the Third-Order Dispersion in a Photonic Crystal Fiber With Femtosecond Pulses Pumping at Normal-Dispersion Regime. IEEE Photonics Journal, 2015, 7, 1-11.	2.0	5
30	Ultrashort and high-sensitivity refractive index sensor based on dual-core photonic crystal fiber. Optical Engineering, 2017, 56, 037107.	1.0	5
31	A Novel Method Based on Digital Image Processing Technique and Finite Element Method for Rapidly Modeling Optical Properties of Actual Microstructured Optical Fibers. IEEE Photonics Journal, 2016, 8, 1-14.	2.0	4
32	Broadband core shift photonic crystal fiber polarization filter at 1.55â€'μm based on surface plasmon resonance. Optik, 2018, 165, 218-225.	2.9	4
33	Analysis of a wavelength-tunable D-shaped photonic crystal fiber filter with broad bandwidth. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1525.	2.1	4
34	Overview of photonic devices based on functional material-integrated photonic crystal fibers. Journal Physics D: Applied Physics, 2022, 55, 273001.	2.8	4
35	Dual communication windows polarization filter based on photonic crystal fiber with nano-scale gold film. Optical Fiber Technology, 2018, 46, 282-286.	2.7	2
36	Microstructured Fiber Sensor Based On Resonance Coupling Between Cladding Mode and Surface Plasmon Mode for Sucrose Determination. Journal of Lightwave Technology, 2022, 40, 4003-4010.	4.6	1