Douglas C Elliott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3739786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Historical Developments in Hydroprocessing Bio-oils. Energy & amp; Fuels, 2007, 21, 1792-1815.	2.5	1,199
2	Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology, 2015, 178, 147-156.	4.8	729
3	A review and perspective of recent bio-oil hydrotreating research. Green Chemistry, 2014, 16, 491-515.	4.6	439
4	Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Research, 2013, 2, 445-454.	2.4	397
5	Catalytic Hydroprocessing of Chemical Models for Bio-oil. Energy & amp; Fuels, 2009, 23, 631-637.	2.5	336
6	Catalytic hydrothermal gasification of biomass. Biofuels, Bioproducts and Biorefining, 2008, 2, 254-265.	1.9	335
7	Catalytic hydroprocessing of biomass fast pyrolysis bioâ€oil to produce hydrocarbon products. Environmental Progress and Sustainable Energy, 2009, 28, 441-449.	1.3	335
8	Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Applied Energy, 2014, 129, 384-394.	5.1	281
9	Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Industrial & amp; Engineering Chemistry Research, 1993, 32, 1542-1548.	1.8	269
10	State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renewable and Sustainable Energy Reviews, 2013, 20, 619-641.	8.2	257
11	Acidity of Biomass Fast Pyrolysis Bio-oils. Energy & Fuels, 2010, 24, 6548-6554.	2.5	235
12	Catalytic Hydroprocessing of Fast Pyrolysis Bio-oil from Pine Sawdust. Energy & Fuels, 2012, 26, 3891-3896.	2.5	185
13	Norms, Standards, and Legislation for Fast Pyrolysis Bio-oils from Lignocellulosic Biomass. Energy & Fuels, 2015, 29, 2471-2484.	2.5	139
14	Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2013, 2, 455-464.	2.4	138
15	Chemical Processing in High-Pressure Aqueous Environments. 8. Improved Catalysts for Hydrothermal Gasification. Industrial & Engineering Chemistry Research, 2006, 45, 3776-3781.	1.8	134
16	Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions. Energy & Fuels, 2011, 25, 5462-5471.	2.5	120
17	Chemical Processing in High-Pressure Aqueous Environments. 4. Continuous-Flow Reactor Process Development Experiments for Organics Destruction. Industrial & Engineering Chemistry Research, 1994, 33, 566-574.	1.8	119
18	Conversion of biomass-derived syngas to alcohols and C2 oxygenates using supported Rh catalysts in a microchannel reactor. Catalysis Today, 2007, 120, 90-95.	2.2	115

DOUGLAS C ELLIOTT

#	Article	IF	CITATIONS
19	Chemical Processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction. Industrial & Engineering Chemistry Research, 1994, 33, 558-565.	1.8	113
20	Characterization of functionalized nanoporous supports for protein confinement. Nanotechnology, 2006, 17, 5531-5538.	1.3	109
21	Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass Feedstocks. Industrial & Engineering Chemistry Research, 2004, 43, 1999-2004.	1.8	103
22	Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors. ACS Sustainable Chemistry and Engineering, 2014, 2, 207-215.	3.2	101
23	Review of recent reports on process technology for thermochemical conversion of whole algae to liquid fuels. Algal Research, 2016, 13, 255-263.	2.4	91
24	Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments. Industrial & amp; Engineering Chemistry Research, 1993, 32, 1535-1541.	1.8	88
25	Conversion of Biomass Syngas to DME Using a Microchannel Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 1722-1727.	1.8	82
26	Aqueous catalyst systems for the water-gas shift reaction. 1. Comparative catalyst studies. Industrial & Engineering Chemistry Product Research and Development, 1983, 22, 426-431.	0.5	79
27	Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover. ACS Sustainable Chemistry and Engineering, 2015, 3, 892-902.	3.2	78
28	Aqueous catalyst systems for the water-gas shift reaction. 2. Mechanism of basic catalysis. Industrial & Engineering Chemistry Product Research and Development, 1983, 22, 431-435.	0.5	76
29	Stabilization of Softwood-Derived Pyrolysis Oils for Continuous Bio-oil Hydroprocessing. Topics in Catalysis, 2016, 59, 55-64.	1.3	74
30	Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil. Energy & Fuels, 2014, 28, 5909-5917.	2.5	73
31	Catalytic Wet Gasification of Municipal and Animal Wastes. Industrial & Engineering Chemistry Research, 2007, 46, 8839-8845.	1.8	71
32	Biofuel from fast pyrolysis and catalytic hydrodeoxygenation. Current Opinion in Chemical Engineering, 2015, 9, 59-65.	3.8	68
33	Water, alkali and char in flash pyrolysis oils. Biomass and Bioenergy, 1994, 7, 179-185.	2.9	67
34	Results of the IEA Round Robin on Viscosity and Stability of Fast Pyrolysis Bio-oils. Energy & Fuels, 2012, 26, 3769-3776.	2.5	65
35	Red Mud Catalytic Pyrolysis of Pinyon Juniper and Single-Stage Hydrotreatment of Oils. Energy & Fuels, 2016, 30, 7947-7958.	2.5	60
36	Chemical Processing in High-Pressure Aqueous Environments. 6. Demonstration of Catalytic Gasification for Chemical Manufacturing Wastewater Cleanup in Industrial Plants. Industrial & Engineering Chemistry Research, 1999, 38, 879-883.	1.8	59

DOUGLAS C ELLIOTT

#	Article	IF	CITATIONS
37	Development of the Basis for an Analytical Protocol for Feeds and Products of Bio-oil Hydrotreatment. Energy & Fuels, 2012, 26, 2454-2460.	2.5	56
38	Results of the IEA Round Robin on Viscosity and Aging of Fast Pyrolysis Bio-oils: Long-Term Tests and Repeatability. Energy & Fuels, 2012, 26, 7362-7366.	2.5	55
39	Chemical Processing in High-Pressure Aqueous Environments. 9. Process Development for Catalytic Gasification of Algae Feedstocks. Industrial & Engineering Chemistry Research, 2012, 51, 10768-10777.	1.8	53
40	Guidelines for Transportation, Handling, and Use of Fast Pyrolysis Bio-Oil. 1. Flammability and Toxicity. Energy & Fuels, 2012, 26, 3864-3873.	2.5	49
41	Technology advancements in hydroprocessing of bio-oils. Biomass and Bioenergy, 2019, 125, 151-168.	2.9	49
42	The effect of catalysis on wood-gasification tar composition. Bioresource Technology, 1986, 9, 195-203.	0.3	47
43	Results of the International Energy Agency Round Robin on Fast Pyrolysis Bio-oil Production. Energy & Fuels, 2017, 31, 5111-5119.	2.5	47
44	Comparisons of the yields and properties of the oil products from direct thermochemical biomass liquefaction processes. Canadian Journal of Chemical Engineering, 1985, 63, 99-104.	0.9	46
45	Hydroprocessing Bio-Oil and Products Separation for Coke Production. ACS Sustainable Chemistry and Engineering, 2013, 1, 389-392.	3.2	44
46	Transportation fuels from biomass via fast pyrolysis and hydroprocessing. Wiley Interdisciplinary Reviews: Energy and Environment, 2013, 2, 525-533.	1.9	40
47	Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel. Energy & Fuels, 2014, 28, 7510-7516.	2.5	38
48	Chemical Processing in High-Pressure Aqueous Environments. 5. New Processing Concepts. Industrial & Engineering Chemistry Research, 1996, 35, 4111-4118.	1.8	35
49	Catalytic hydrotreating of black liquor oils. Energy & Fuels, 1991, 5, 102-109.	2.5	34
50	Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: grape pomace. Biomass Conversion and Biorefinery, 2017, 7, 455-465.	2.9	33
51	Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks. Applied Biochemistry and Biotechnology, 2004, 115, 0807-0826.	1.4	32
52	Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating. Fuel, 2017, 202, 620-630.	3.4	30
53	Product Analysis from Direct Liquefaction of Several High-Moisture Biomass Feedstocks. ACS Symposium Series, 1988, , 179-188.	0.5	23
54	Aqueous catalyst systems for the water-gas shift reaction. 3. Continuous gas processing results. Industrial & Engineering Chemistry Product Research and Development, 1986, 25, 541-549.	0.5	17

DOUGLAS C ELLIOTT

#	Article	IF	CITATIONS
55	Alkali catalysis in biomass gasification. Journal of Analytical and Applied Pyrolysis, 1984, 6, 299-316.	2.6	16
56	Bench-Scale Reactor Tests of Low Temperature, Catalytic Gasification of Wet Industrial Wastes. Journal of Solar Energy Engineering, Transactions of the ASME, 1993, 115, 52-56.	1.1	16
57	Decarboxylation as a means of upgrading the heating value of low-rank coals. Fuel, 1980, 59, 805-806.	3.4	15
58	Analysis of thermochemically-derived wood oil. Fuel, 1984, 63, 368-372.	3.4	13
59	Low Temperature Gasification of Biomass Under Pressure. , 1985, , 937-950.		13
60	Analysis of chemical intermediates from low-temperature steam gasification of biomass. Fuel, 1984, 63, 4-8.	3.4	9
61	Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating. Journal of Visualized Experiments, 2016, , .	0.2	6
62	Analysis and Comparison of Products from Wood Liquefaction. , 1985, , 1003-1018.		6
63	Electrochemical Upgrading of Bio-Oil. ECS Transactions, 2017, 78, 3149-3158.	0.3	5
64	Hydrothermal liquefaction of sludge and biomass residues. , 2020, , 117-131.		5
65	Evaluation of Wastewater Treatment Requirements for Thermochemical Biomass Liquefaction. , 1993, , 1299-1313.		3
66	Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks. , 2004, , 807-825.		2
67	Upgrading Liquid Products: Notes from the Workshop at the International Conference Research in Thermochemical Biomass Conversion. , 1988, , 1170-1176.		2