
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738932/publications.pdf Version: 2024-02-01

LUC ZIMMER

#	Article	IF	CITATIONS
1	The dopamine mesocorticolimbic pathway is affected by deficiency in nâ^'3 polyunsaturated fatty acids. American Journal of Clinical Nutrition, 2002, 75, 662-667.	2.2	197
2	Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n–3 polyunsaturated fatty acids. Journal of Lipid Research, 2000, 41, 32-40.	2.0	181
3	Polyunsaturated fatty acids and cerebral function: Focus on monoaminergic neurotransmission. Lipids, 2001, 36, 937-944.	0.7	161
4	Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. Journal of Lipid Research, 2000, 41, 32-40.	2.0	156
5	Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neuroscience Letters, 2000, 284, 25-28.	1.0	155
6	Base atalyzed Electrophilic Trifluoromethylthiolation of Terminal Alkynes. Angewandte Chemie - International Edition, 2013, 52, 10814-10817.	7.2	137
7	Acute Treatment with the Antidepressant Fluoxetine Internalizes 5-HT1A Autoreceptors and Reduces the In Vivo Binding of the PET Radioligand [18F]MPPF in the Nucleus Raphe Dorsalis of Rat. Journal of Neuroscience, 2004, 24, 5420-5426.	1.7	129
8	Electrophilic Trifluoromethylthiolation of Carbonyl Compounds. Chemistry - A European Journal, 2014, 20, 8589-8593.	1.7	129
9	Chronic n-3 polyunsaturated fatty acid diet-deficiency acts on dopamine metabolism in the rat frontal cortex: a microdialysis study. Neuroscience Letters, 1998, 240, 177-181.	1.0	110
10	Small-animal positron emission tomography as a tool for neuropharmacology. Trends in Pharmacological Sciences, 2010, 31, 411-417.	4.0	103
11	A 18F-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging. Journal of Nuclear Medicine, 2005, 46, 1980-9.	2.8	85
12	PET radiotracers for molecular imaging in the brain: Past, present and future. NeuroImage, 2012, 61, 363-370.	2.1	83
13	[18F]MPPF as a tool for the in vivo imaging of 5-HT1A receptors in animal and human brain. Neuropharmacology, 2007, 52, 695-707.	2.0	79
14	Effect of endogenous serotonin on the binding of the 5-HT1A PET ligand 18F-MPPF in the rat hippocampus: kinetic beta measurements combined with microdialysis. Journal of Neurochemistry, 2002, 80, 278-286.	2.1	78
15	Up-regulation of hippocampal serotonin metabolism in mild cognitive impairment. Neurology, 2007, 69, 1012-1017.	1.5	68
16	Effects of subthalamic nucleus stimulation on actual and imagined movement in Parkinson's disease : a PET study. Journal of Neurology, 2002, 249, 1689-1698.	1.8	64
17	PET study of the [11 C]raclopride binding in the striatum of the awake cat: effects of anaesthetics and role of cerebral blood flow. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 141-148.	3.3	64
18	Activation of afferents to the ventral tegmental area in response to acute amphetamine: a doubleâ€labelling study. European Journal of Neuroscience, 2007, 26, 1011-1025.	1.2	62

#	Article	IF	CITATIONS
19	Ultra high performance liquid chromatography as a tool for the discovery and the analysis of biomarkers of diseases: A review. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 927, 37-53.	1.2	62
20	Modeling [18F]MPPF Positron Emission Tomography Kinetics for the Determination of 5-Hydroxytryptamine(1A) Receptor Concentration with Multiinjection. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 753-765.	2.4	58
21	5-HT7 Receptor Antagonists as a New Class of Antidepressants. Drug News and Perspectives, 2007, 20, 613.	1.9	58
22	Toward brain imaging of serotonin 5-HT1A autoreceptor internalization. NeuroImage, 2004, 22, 1421-1426.	2.1	54
23	Functional correlates for 5-HT1A receptors in maternally deprived rats displaying anxiety and depression-like behaviors. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 262-268.	2.5	54
24	Syntheses, Radiolabelings, and in Vitro Evaluations of Fluorinated PET Radioligands of 5-HT ₆ Serotoninergic Receptors. Journal of Medicinal Chemistry, 2014, 57, 3884-3890.	2.9	54
25	Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate. Journal of Neuroscience, 2017, 37, 6741-6750.	1.7	52
26	Pharmacological characterization of (E)-N-(3-iodoprop-2-enyl)-2beta-carbomethoxy-3beta-(4'-methylphenyl)n ortropane as a selective and potent inhibitor of the neuronal dopamine transporter. Journal of Pharmacology and Experimental Therapeutics, 1999, 291, 648-54.	1.3	51
27	A distinct [18F]MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer's disease. NeuroImage, 2008, 40, 1251-1256.	2.1	50
28	Increased serotonin receptor availability in human sleep: Evidence from an [18F]MPPF PET study in narcolepsy. NeuroImage, 2006, 30, 341-348.	2.1	47
29	Selective serotonin 5-HT1A receptor biased agonists elicitdistinct brain activation patterns: a pharmacoMRI study. Scientific Reports, 2016, 6, 26633.	1.6	47
30	A PET imaging study of 5-HT1A receptors in cat brain after acute and chronic fluoxetine treatment. NeuroImage, 2006, 33, 834-842.	2.1	46
31	Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. Journal of Alzheimer's Disease, 2018, 62, 503-522.	1.2	46
32	Raytest ClearPETâ,,¢, a new generation small animal PET scanner. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 571, 498-501.	0.7	44
33	In-capillary derivatization and capillary electrophoresis separation of amino acid neurotransmitters from brain microdialysis samples. Journal of Chromatography A, 2008, 1205, 144-149.	1.8	44
34	Positron emission tomography neuroimaging for a better understanding of the biology of ADHD. Neuropharmacology, 2009, 57, 601-607.	2.0	44
35	[18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 594-605.	3.3	42
36	Imaging Dopamine and Serotonin Systems on MPTP Monkeys: A Longitudinal PET Investigation of Compensatory Mechanisms. Journal of Neuroscience, 2016, 36, 1577-1589.	1.7	42

#	Article	IF	CITATIONS
37	Decreased [18F]MPPF Binding Potential in the Dorsal Raphe Nucleus After a Single Oral Dose of Fluoxetine: A Positron-Emission Tomography Study in Healthy Volunteers. Biological Psychiatry, 2008, 63, 1135-1140.	0.7	41
38	Selective trifluoromethylthiolation of heteroaromatic sp2 C–H bonds with the 2nd generation of trifluoromethanesulfenamide reagent. Journal of Fluorine Chemistry, 2015, 171, 78-81.	0.9	41
39	Acute ethanol induces Fos in GABAergic and non-GABAergic forebrain neurons: A double-labeling study in the medial prefrontal cortex and extended amygdala. Neuroscience, 2008, 153, 259-267.	1.1	40
40	A Multi-Atlas Based Method for Automated Anatomical Rat Brain MRI Segmentation and Extraction of PET Activity. PLoS ONE, 2014, 9, e109113.	1.1	40
41	In Silico, in Vitro, and in Vivo Evaluation of New Candidates for α-Synuclein PET Imaging. Molecular Pharmaceutics, 2018, 15, 3153-3166.	2.3	40
42	Comparison of 4 Radiolabeled Antagonists for Serotonin 5-HT ₇ Receptor Neuroimaging: Toward the First PET Radiotracer. Journal of Nuclear Medicine, 2011, 52, 1811-1818.	2.8	37
43	Translating biased agonists from molecules to medications: Serotonin 5-HT1A receptor functional selectivity for CNS disorders. , 2022, 229, 107937.		35
44	A reduced extracellular serotonin level increases the 5-HT1A PET ligand 18F-MPPF binding in the rat hippocampus. Journal of Nuclear Medicine, 2003, 44, 1495-501.	2.8	35
45	Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer's disease: A post-mortem study with PET radiopharmaceuticals. Neuropharmacology, 2016, 109, 88-95.	2.0	34
46	Neither the density nor function of striatal dopamine transporters were influenced by chronic n-3 polyunsaturated fatty acid deficiency in rodents. Neuroscience Letters, 2002, 321, 95-99.	1.0	33
47	Carbon-11 labelling of 8{{3-[4-(2-[11C]methoxyphenyl)piperazin-1-yl]-2-hydroxypropyl}oxy}thiochroman, a presynaptic 5-HT1A receptor agonist, and its in vivo evaluation in anaesthetised rat and in awake cat. Nuclear Medicine and Biology, 2003, 30, 541-546.	0.3	32
48	R-citalopram prevents the neuronal adaptive changes induced by escitalopram. NeuroReport, 2007, 18, 1553-1556.	0.6	32
49	Unchanged density of 5-HT1A autoreceptors on the plasma membrane of nucleus raphe dorsalis neurons in rats chronically treated with fluoxetine. Neuroscience, 2008, 151, 692-700.	1.1	30
50	Displacement of the PET ligand18F-MPPF by the electrically evoked serotonin release in the rat hippocampus. Synapse, 2003, 49, 239-245.	0.6	29
51	Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging?. Frontiers in Molecular Neuroscience, 2019, 12, 255.	1.4	29
52	Enhanced Anxiety Observed in Cocaine Withdrawn Rats Is Associated with Altered Reactivity of the Dorsomedial Prefrontal Cortex. PLoS ONE, 2012, 7, e43535.	1.1	28
53	The potential of the β-Microprobe, an intracerebral radiosensitive probe, to monitor the [18F]MPPF binding in the rat dorsal raphe nucleus. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 1237-1247.	3.3	27
54	A comparison of in vivo and in vitro neuroimaging of 5-HT1A receptor binding sites in the cat brain. Journal of Chemical Neuroanatomy, 2006, 31, 226-232.	1.0	27

#	Article	IF	CITATIONS
55	Automated radiosynthesis of the Pittsburg compound-B using a commercial synthesizer. Nuclear Medicine Communications, 2008, 29, 920-926.	0.5	27
56	In vivo biased agonism at 5-HT1A receptors: characterisation by simultaneous PET/MR imaging. Neuropsychopharmacology, 2018, 43, 2310-2319.	2.8	27
57	Synthesis and biological evaluation of potential 5-HT7 receptor PET radiotracers. European Journal of Medicinal Chemistry, 2011, 46, 3455-3461.	2.6	26
58	n-3 polyunsaturated fatty acid deficiency and dopamine metabolism in the rat frontal cortex. Lipids, 1999, 34, S251-S251.	0.7	24
59	Genetic Inactivation of Prokineticin Receptor-1 Leads to Heart and Kidney Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 842-850.	1.1	24
60	Radiosynthesis and Preclinical Evaluation of 18F-F13714 as a Fluorinated 5-HT1A Receptor Agonist Radioligand for PET Neuroimaging. Journal of Nuclear Medicine, 2012, 53, 969-976.	2.8	24
61	Differential effects of amyloid-beta 1–40 and 1–42 fibrils on 5-HT 1A serotonin receptors in rat brain. Neurobiology of Aging, 2016, 40, 11-21.	1.5	24
62	Quantitative longitudinal imaging of activated microglia as a marker of inflammation in the pilocarpine rat model of epilepsy using [¹¹ C]-(<i>R</i>)-PK11195 PET and MRI. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1251-1263.	2.4	24
63	Looking for a 5-HT7 radiotracer for positron emission tomography. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3730-3733.	1.0	23
64	Test Retest Reproducibility of 18F-MPPF PET in Healthy Humans: A Reliability Study. Journal of Nuclear Medicine, 2007, 48, 1279-1288.	2.8	22
65	Synthesis and biological evaluation in rat and cat of [18F]12ST05 as a potential 5-HT6 PET radioligand. Nuclear Medicine and Biology, 2007, 34, 995-1002.	0.3	22
66	Current status of positron emission tomography radiotracers for serotonin receptors in humans. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 105-113.	0.5	22
67	PET Radiotracers for Molecular Imaging of Serotonin 5-HT _{1A} Receptors. Current Medicinal Chemistry, 2013, 21, 70-81.	1.2	22
68	Marmoset Serotonin 5-HT _{1A} Receptor Mapping with a Biased Agonist PET Probe ¹⁸ F-F13714: Comparison with an Antagonist Tracer ¹⁸ F-MPPF in Awake and Anesthetized States. International Journal of Neuropsychopharmacology, 2016, 19, pyw079.	1.0	22
69	Hippocampal 5-HT1A receptor expression changes in prodromal stages of Alzheimer's disease: Beneficial or deleterious?. Neuropharmacology, 2017, 123, 446-454.	2.0	22
70	Synthesis and pharmacological evaluation of a new series of radiolabeled ligands for 5-HT7 receptor PET neuroimaging. Nuclear Medicine and Biology, 2014, 41, 330-337.	0.3	21
71	18F-F13640 preclinical evaluation in rodent, cat and primate as a 5-HT1A receptor agonist for PET neuroimaging. Brain Structure and Function, 2018, 223, 2973-2988.	1.2	21
72	MPTP <scp>A</scp> nimal <scp>M</scp> odel of <scp>P</scp> arkinsonism: <scp>D</scp> opamine <scp>C</scp> ell <scp>D</scp> eath or <scp>O</scp> nly <scp>T</scp> yrosine <scp>H</scp> ydroxylase <scp>I</scp> mpairment? – <scp>A S</scp> tudy <scp>U</scp> sing <scp>PET I</scp> maging, <scp>A</scp> utoradiography, and <scp>I</scp> mmunohistochemistry in the <scp>C</scp> at. CNS Neuroscience and Therapeutics, 2012, 18, 934-941.	1.9	20

#	Article	IF	CITATIONS
73	A Postmortem Study to Compare Agonist and Antagonist 5â€ <scp>HT</scp> _{1A} Receptorâ€binding Sites in Alzheimer's Disease. CNS Neuroscience and Therapeutics, 2014, 20, 930-934.	1.9	20
74	Contribution of Clinical Neuroimaging to the Understanding of the Pharmacology of Methylphenidate. Trends in Pharmacological Sciences, 2017, 38, 608-620.	4.0	20
75	Effects of amyloid- $\hat{1}^2$ peptides on the serotoninergic 5-HT1A receptors in the rat hippocampus. Neurobiology of Aging, 2011, 32, 103-114.	1.5	19
76	Evolution of dopamine receptors in the rat after neonatal hypoxia-ischemia: Autoradiographic studies. Life Sciences, 1996, 60, 151-162.	2.0	18
77	Short- and long-term effects of p-ethynylphenylalanine on brain serotonin levels. Neurochemical Research, 2002, 27, 269-275.	1.6	18
78	Prominent Role ofn—3 Polyunsaturated Fatty Acids in Cortical Dopamine Metabolism. Nutritional Neuroscience, 1999, 2, 257-265.	1.5	17
79	Preclinical evaluation of [18F]2FNQ1P as the first fluorinated serotonin 5-HT6 radioligand for PET imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 495-502.	3.3	17
80	MicroPET imaging of 5-HT1A receptors in rat brain: a test–retest [18F]MPPF study. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 53-62.	3.3	16
81	Behaviour of a genetic mouse model of depression in the learned helplessness paradigm. Psychopharmacology, 2011, 215, 595-605.	1.5	16
82	18F-F13640 PET imaging of functional receptors in humans. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 220-221.	3.3	16
83	Serotonin 5-HT _{1A} Receptor Biased Agonists Induce Different Cerebral Metabolic Responses: A [¹⁸ F]-Fluorodesoxyglucose Positron Emission Tomography Study in Conscious and Anesthetized Rats. ACS Chemical Neuroscience, 2019, 10, 3108-3119.	1.7	15
84	SIC, an intracerebral beta(+)-range-sensitive probe for radiopharmacology investigations in small laboratory animals: binding studies with (11)C-raclopride. Journal of Nuclear Medicine, 2002, 43, 227-33.	2.8	15
85	Activity in the rat olfactory cortex is correlated with behavioral response to odor: a microPET study. Brain Structure and Function, 2017, 222, 577-586.	1.2	14
86	Pharmaco-fUS for Characterizing Drugs for Alzheimer's Disease – The Case of THN201, a Drug Combination of Donepezil Plus Mefloquine. Frontiers in Neuroscience, 2020, 14, 835.	1.4	14
87	Functional ultrasound imaging to study brain dynamics: Application of pharmaco-fUS to atomoxetine. Neuropharmacology, 2020, 179, 108273.	2.0	14
88	Outcome of Poor-Grade Subarachnoid Hemorrhage as Determined by Biomarkers of Glucose Cerebral Metabolism. Neurocritical Care, 2013, 18, 234-244.	1.2	13
89	Binding of the PET Radiotracer [¹⁸ F]BF227 Does not Reflect the Presence of Alpha-Synuclein Aggregates in Transgenic Mice. Current Alzheimer Research, 2014, 11, 955-960.	0.7	13
90	Evaluation of [¹⁸ F]2FP3 in pigs and nonâ€human primates. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 34-42.	0.5	12

#	Article	IF	CITATIONS
91	Amyloid-Beta Radiotracer [18F]BF-227 Does Not Bind to Cytoplasmic Glial Inclusions of Postmortem Multiple System Atrophy Brain Tissue. Contrast Media and Molecular Imaging, 2018, 2018, 1-7.	0.4	11
92	Innovative approaches in CNS drug discovery. Therapie, 2021, 76, 101-109.	0.6	11
93	Towards in vivo imaging of functionally active 5-HT1A receptors in schizophrenia: concepts and challenges. Translational Psychiatry, 2021, 11, 22.	2.4	11
94	Characterization and Reliability of [18F]2FNQ1P in Cynomolgus Monkeys as a PET Radiotracer for Serotonin 5-HT6 Receptors. Frontiers in Pharmacology, 2017, 8, 471.	1.6	10
95	Pharmacological agonists for more-targeted CNS radio-pharmaceuticals. Oncotarget, 2016, 7, 80111-80112.	0.8	10
96	Microdialysis as a tool for in vivo study of dopamine transporter function in rat brains. Journal of Neuroscience Methods, 2000, 103, 137-144.	1.3	9
97	Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats. Journal of Neurochemistry, 2005, 93, 1623-1632.	2.1	9
98	Effects of the serotonin 5-HT7 receptor antagonist SB-269970 on the inhibition of dopamine neuronal firing induced by amphetamine. European Journal of Pharmacology, 2007, 570, 72-76.	1.7	9
99	Simultaneous in vivo magnetic resonance imaging and radioactive measurements with the β-MicroProbe. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1868-1872.	3.3	9
100	F15063, a potential antipsychotic with dopamine D2/D3 receptor antagonist, 5-HT1A receptor agonist and dopamine D4 receptor partial agonist properties: Influence on neuronal firing and neurotransmitter release. European Journal of Pharmacology, 2009, 607, 74-83.	1.7	9
101	Impact of pharmacist and clinician dual intervention on prescribed benzodiazepines in prisoner patients: a retrospective study. Fundamental and Clinical Pharmacology, 2011, 25, 762-767.	1.0	9
102	Genetic association between helpless trait and depression-related phenotypes: evidence from crossbreeding studies with H/Rouen and NH/Rouen mice. International Journal of Neuropsychopharmacology, 2012, 15, 363-374.	1.0	9
103	Benzodiazepine dose reduction in prisoner patients: 15Âyears' teamwork between psychiatrists and pharmacists. Journal of Clinical Pharmacy and Therapeutics, 2018, 43, 807-812.	0.7	8
104	PET imaging of the influence of physiological and pathological α-synuclein on dopaminergic and serotonergic neurotransmission in mouse models. CNS Neuroscience and Therapeutics, 2019, 25, 57-68.	1.9	8
105	Pharmacological MRI to investigate the functional selectivity of 5-HT1A receptor biased agonists. Neuropharmacology, 2020, 172, 107867.	2.0	8
106	Bayesian Estimation of the ntPET Model in Single-Scan Competition PET Studies. Frontiers in Physiology, 2020, 11, 498.	1.3	8
107	PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cerebral Cortex, 2022, 32, 2717-2728.	1.6	8
108	Large scale production of 6â€{ ¹⁸ F]fluoro‣â€DOPA in a semiâ€automated system. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, S868.	0.5	7

#	Article	IF	CITATIONS
109	Combining the radiosensitive Beta MicroProbe to Nuclear Magnetic Resonance: theoretical approach for in vivo studies in small animals. Journal of Neuroscience Methods, 2004, 140, 47-52.	1.3	7
110	A wireless beta-microprobe based on pixelated silicon forin vivobrain studies in freely moving rats. Physics in Medicine and Biology, 2013, 58, 4483-4500.	1.6	7
111	PIXSIC: A Wireless Intracerebral Radiosensitive Probe in Freely Moving Rats. Molecular Imaging, 2015, 14, 7290.2015.00020.	0.7	7
112	Evaluation of Myelin Radiotracers in the Lysolecithin Rat Model of Focal Demyelination: Beware of Pitfalls!. Contrast Media and Molecular Imaging, 2019, 2019, 1-10.	0.4	7
113	Comparative diagnosis interest of NfL and pNfH in CSF and plasma in a context of FTD–ALS spectrum. Journal of Neurology, 2022, 269, 1522-1529.	1.8	7
114	Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography. Reviews in the Neurosciences, 2014, 25, 357-65.	1.4	6
115	A microPET comparison of the effects of etifoxine and diazepam on [11 C]flumazenil uptake in rat brains. Neuroscience Letters, 2016, 612, 74-79.	1.0	6
116	The in Vitro Actions of Loxapine on Dopaminergic and Serotonergic Receptors. Time to Consider Atypical Classification of This Antipsychotic Drug?. International Journal of Neuropsychopharmacology, 2018, 21, 355-360.	1.0	6
117	Cluster headache: state of the art of pharmacological treatments and therapeutic perspectives. Fundamental and Clinical Pharmacology, 2021, 35, 595-619.	1.0	6
118	Can positron emission tomography facilitate paediatric drug development?. Fundamental and Clinical Pharmacology, 2008, 22, 595-598.	1.0	5
119	The Potential of a Radiosensitive Intracerebral Probe to Monitor ¹⁸ F-MPPF Binding in Mouse Hippocampus In Vivo. Journal of Nuclear Medicine, 2008, 49, 1155-1161.	2.8	5
120	[11 C]PF-3274167 as a PET radiotracer of oxytocin receptors: Radiosynthesis and evaluation in rat brain. Nuclear Medicine and Biology, 2017, 55, 1-6.	0.3	5
121	[18F]F13640, a 5-HT1A Receptor Radiopharmaceutical Sensitive to Brain Serotonin Fluctuations. Frontiers in Neuroscience, 2021, 15, 622423.	1.4	5
122	Preclinical validation of [18F]2FNQ1P as a specific PET radiotracer of 5-HT6 receptors in rat, pig, non-human primate and human brain tissue. Nuclear Medicine and Biology, 2020, 82-83, 57-63.	0.3	5
123	Radiosynthesis and in vivo evaluation of fluorinated huprine derivates as PET radiotracers of acetylcholinesterase. Nuclear Medicine and Biology, 2013, 40, 554-560.	0.3	4
124	PIXSIC, a Pixelated β+-Sensitive Probe for Radiopharmacological Investigations in Rat Brain: Binding Studies with [18F]MPPF. Molecular Imaging and Biology, 2015, 17, 163-167.	1.3	4
125	Inter-subject registration and application of the SIGMA rat brain atlas for regional labeling in functional ultrasound imaging. Journal of Neuroscience Methods, 2021, 355, 109139.	1.3	4
126	Implantable CMOS pixel sensor for positron imaging in rat brain. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 911, 19-24.	0.7	3

#	Article	IF	CITATIONS
127	MAPSSIC, a Novel CMOS Intracerebral Positrons Probe for Deep Brain Imaging in Awake and Freely Moving Rats: A Monte Carlo Study. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3, 302-314.	2.7	3
128	The ANIMAGE project: a multimodal imaging platform for small animal research. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527, 117-123.	0.7	2
129	A new multimodality system for quantitative in vivo studies in small animals: combination of nuclear magnetic resonance and the radiosensitive /spl beta/-MicroProbe. IEEE Transactions on Nuclear Science, 2005, 52, 1281-1287.	1.2	2
130	Internalization of serotonin 5â€HT _{1A} autoreceptors as an imaging biomarker of antidepressant response. Environmental Sciences Europe, 2012, 1, 239-245.	2.6	2
131	Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson's Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. Journal of Parkinson's Disease, 2021, 11, 1257-1269.	1.5	2
132	Toward a quantification of extracellular brain endogenous serotonin concentration with [18F]MPPF in a multi-injection PET protocol. NeuroImage, 2008, 41, T149.	2.1	1
133	Change in Expression of 5-HT6 Receptor at Different Stages of Alzheimer's Disease: A Postmortem Study with the PET Radiopharmaceutical [18F]2FNQ1P. Journal of Alzheimer's Disease, 2020, 75, 1329-1338.	1.2	1
134	Fundamental and clinical neuropharmacology, a terra incognita with constantly expanding frontiers. Fundamental and Clinical Pharmacology, 2021, 35, 501-505.	1.0	1
135	Toward brain imaging of serotonin 5-HT1A autoreceptor internalization. NeuroImage, 2004, 22, 1421-1421.	2.1	0
136	P.2.b.010 PKC blockade prevents the in vivo allosteric modulation of the 5-HT transporter induced by escitalopram. European Neuropsychopharmacology, 2008, 18, S318-S319.	0.3	0
137	IMIC $\hat{a} \in$ " needle-shaped low-power monolithic active pixel sensor for molecular neuroimaging on awake and freely moving rats. , 2016, , .		0
138	Contrast Media & Molecular Imaging, a Journal at the Crossroads of the Scientific and Medical Disciplines of Biomedical Imaging. Contrast Media and Molecular Imaging, 2019, 2019, 1-2.	0.4	0
139	MAPSSIC, a communicating MAPS-based intracerebral positrons probe for deep brain imaging in awake and freely-moving rats. EPJ Web of Conferences, 2020, 225, 09002.	0.1	0
140	Experimental neuropsychopharmacology, yesterday, today and tomorrow. A conversation with Michel Hamon. Therapie, 2021, 76, 63-66.	0.6	0
141	Clinical research in psychopharmacology, the current situation and its perspectives. A conversation with Pierre-Michel Llorca. Therapie, 2021, 76, 67-70.	0.6	0
142	The contrasting landscape of drug discovery in neuropsychopharmacology. A conversation with Adrian Newman-Tancredi. Therapie, 2021, 76, 71-74.	0.6	0
143	How to improve in France ADHD transition support from childhood to adulthood. L'Encephale, 2021, 47, 187-188.	0.3	0
144	Neuropsychopharmacology, a challenge for the understanding of the thinking brain and its future therapies. Therapie, 2021, 76, 61-62.	0.6	0

#	Article	IF	CITATIONS
145	Ozone Atmospheric Pollution and Alzheimer's Disease: From Epidemiological Facts to Molecular Mechanisms. Advances in Alzheimer's Disease, 2021, , .	0.2	Ο
146	Impaired Local and Long-Range Brain Connectivity and Visual Response in a Genetic Rat Model of Hyperactivity Revealed by Functional Ultrasound. Frontiers in Neuroscience, 2022, 16, 865140.	1.4	0