
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738819/publications.pdf Version: 2024-02-01

ASSENSI OLIVA

#	Article	IF	CITATIONS
1	Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Applied Energy, 2013, 111, 581-592.	5.1	218
2	Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy Conversion and Management, 1998, 39, 319-330.	4.4	152
3	Direct numerical simulations of two- and three-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4. Journal of Fluid Mechanics, 2007, 586, 259-293.	1.4	136
4	Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study. Computers and Fluids, 2015, 123, 87-98.	1.3	132
5	Direct numerical simulation of the flow over a sphere at <i>Re</i> = 3700. Journal of Fluid Mechanics, 2011, 679, 263-287.	1.4	127
6	Three-dimensional numerical simulation of convection and radiation in a differentially heated cavity using the discrete ordinates method. International Journal of Heat and Mass Transfer, 2004, 47, 257-269.	2.5	114
7	Numerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbow. Powder Technology, 2012, 217, 467-476.	2.1	106
8	Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Physics of Fluids, 2013, 25, .	1.6	106
9	Parametric studies on automotive radiators. Applied Thermal Engineering, 2007, 27, 2033-2043.	3.0	92
10	A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes. Computers and Fluids, 2016, 124, 12-29.	1.3	89
11	Verification of Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124, 11-21.	0.8	87
12	Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to 1011 – Part I: Numerical methods and time-averaged flow. International Journal of Heat and Mass Transfer, 2010, 53, 665-673.	2.5	86
13	Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured grids. Journal of Computational Physics, 2014, 258, 246-267.	1.9	86
14	Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives. Applied Energy, 2015, 142, 337-351.	5.1	81
15	Numerical Study of Plane and Round Impinging Jets using RANS Models. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54, 213-237.	0.6	78
16	On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding. International Journal of Heat and Fluid Flow, 2015, 55, 91-103.	1.1	78
17	Unsteady forces on a circular cylinder at critical Reynolds numbers. Physics of Fluids, 2014, 26, .	1.6	77
18	Flow and turbulent structures around simplified car models. Computers and Fluids, 2014, 96, 122-135.	1.3	63

#	Article	IF	CITATIONS
19	Direct numerical simulation of a differentially heated cavity of aspect ratio 4 with Rayleigh numbers up to – Part II: Heat transfer and flow dynamics. International Journal of Heat and Mass Transfer, 2010, 53, 674-683.	2.5	61
20	Numerical simulation of wind flow around a parabolic trough solar collector. Applied Energy, 2013, 107, 426-437.	5.1	60
21	Numerical analysis of the thermal behaviour of glazed ventilated facades in Mediterranean climates. Part II: applications and analysis of results. Solar Energy, 2003, 75, 229-239.	2.9	59
22	Direct numerical simulation of a NACA0012 in full stall. International Journal of Heat and Fluid Flow, 2013, 43, 194-203.	1.1	59
23	Level-set simulations of buoyancy-driven motion of single and multiple bubbles. International Journal of Heat and Fluid Flow, 2015, 56, 91-107.	1.1	59
24	Building proper invariants for eddy-viscosity subgrid-scale models. Physics of Fluids, 2015, 27, .	1.6	59
25	DNS and RANS modelling of a turbulent plane impinging jet. International Journal of Heat and Mass Transfer, 2012, 55, 789-801.	2.5	58
26	Flamelet mathematical models for non-premixed laminar combustion. Combustion and Flame, 2009, 156, 334-347.	2.8	56
27	Conservation Properties of Unstructured Finite-Volume Mesh Schemes for the Navier-Stokes Equations. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65, 53-79.	0.6	55
28	Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection. International Journal of Thermal Sciences, 2009, 48, 708-721.	2.6	54
29	A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes. Computers and Fluids, 2014, 94, 14-29.	1.3	53
30	Detailed thermodynamic characterization of hermetic reciprocating compressors. International Journal of Refrigeration, 2005, 28, 579-593.	1.8	52
31	Numerical simulation of capillary tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part I: mathematical formulation and numerical model. Applied Thermal Engineering, 2002, 22, 173-182.	3.0	51
32	Numerical simulation and experimental validation of internal heat exchanger influence on CO2 trans-critical cycle performance. International Journal of Refrigeration, 2010, 33, 664-674.	1.8	51
33	Numerical simulation of capillary-tube expansion devices. International Journal of Refrigeration, 1995, 18, 113-122.	1.8	49
34	Two-phase flow distribution in multiple parallel tubes. International Journal of Thermal Sciences, 2010, 49, 909-921.	2.6	49
35	Direct numerical simulation of a fully developed turbulent square duct flow up to <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si9.gif" overflow="scroll"><mmi:mrow><mmi:mrow><mmi:mrow><mmi:mi mathvariant="italic">Re</mmi:mi </mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow><mmi:mi> mathvariant="italic">Re</mmi:mi></mmi:mrow></mmi:mrow></mmi:math 	1.1 <mml:mo></mml:mo>	49 >=
36	International Journal of Heat and Fluid Flow, 2015, 54, 250-267. Numerical analysis of the thermal behaviour of ventilated glazed facades in Mediterranean climates. Part I: development and validation of a numerical model. Solar Energy, 2003, 75, 217-228.	2.9	47

#	Article	IF	CITATIONS
37	A multiple marker level-set method for simulation of deformable fluid particles. International Journal of Multiphase Flow, 2015, 74, 125-142.	1.6	44
38	Fixed-grid numerical modeling of melting and solidification using variable thermo-physical properties – Application to the melting of n-Octadecane inside a spherical capsule. International Journal of Heat and Mass Transfer, 2015, 86, 721-743.	2.5	43
39	Drain water heat recovery storage-type unit for residential housing. Applied Thermal Engineering, 2016, 103, 670-683.	3.0	42
40	Numerical experiments in turbulent natural and mixed convection in internal flows. International Journal of Numerical Methods for Heat and Fluid Flow, 1995, 5, 13-33.	1.6	41
41	Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants. Applied Energy, 2013, 109, 402-414.	5.1	41
42	Flow dynamics in the turbulent wake of a sphere at sub-critical Reynolds numbers. Computers and Fluids, 2013, 80, 233-243.	1.3	41
43	Development of flat plate collector with plastic transparent insulation and low-cost overheating protection system. Applied Energy, 2014, 133, 206-223.	5.1	41
44	DIRECT NUMERICAL SIMULATION OF A THREE-DIMENSIONAL NATURAL-CONVECTION FLOW IN A DIFFERENTIALLY HEATED CAVITY OF ASPECT RATIO 4. Numerical Heat Transfer; Part A: Applications, 2004, 45, 649-673.	1.2	37
45	On the large-eddy simulations for the flow around aerodynamic profiles using unstructured grids. Computers and Fluids, 2013, 84, 176-189.	1.3	37
46	TermoFluids: A new Parallel unstructured CFD code for the simulation of turbulent industrial problems on low cost PC Cluster. Lecture Notes in Computational Science and Engineering, 2009, , 275-282.	0.1	36
47	Limits of the Oberbeck–Boussinesq approximation in a tall differentially heated cavity filled with water. International Journal of Heat and Mass Transfer, 2014, 68, 489-499.	2.5	36
48	Flow over a realistic car model: Wall modeled large eddy simulations assessment and unsteady effects. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 174, 225-240.	1.7	36
49	Implementation of two-equation soot flamelet models for laminar diffusion flames. Combustion and Flame, 2009, 156, 621-632.	2.8	35
50	PIBM: Particulate immersed boundary method for fluid–particle interaction problems. Powder Technology, 2015, 272, 1-13.	2.1	34
51	Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows. Computers and Fluids, 2015, 110, 48-61.	1.3	34
52	Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks. Applied Energy, 2016, 179, 1106-1122.	5.1	33
53	Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000. Computers and Fluids, 2017, 147, 102-118.	1.3	33
54	Numerical simulation and experimental validation of vapour compression refrigeration systems. Special emphasis on CO2 trans-critical cycles. International Journal of Refrigeration, 2005, 28, 1225-1237.	1.8	32

#	Article	IF	CITATIONS
55	Coupled radiation and natural convection: Different approaches of the slw model for a non-gray gas mixture. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 107, 30-46.	1.1	32
56	A new subgrid characteristic length for turbulence simulations on anisotropic grids. Physics of Fluids, 2017, 29, 115109.	1.6	32
57	Numerical study of binary droplets collision in the main collision regimes. Chemical Engineering Journal, 2019, 370, 477-498.	6.6	32
58	Comparison of the performance of falling film and bubble absorbers for air-cooled absorption systems. International Journal of Thermal Sciences, 2009, 48, 1355-1366.	2.6	31
59	Parallel direct Poisson solver for discretisations with one Fourier diagonalisable direction. Journal of Computational Physics, 2011, 230, 4723-4741.	1.9	31
60	MPI-CUDA sparse matrix–vector multiplication for the conjugate gradient method with an approximate inverse preconditioner. Computers and Fluids, 2014, 92, 244-252.	1.3	31
61	Influence of rotation on the flow over a cylinder at Re = 5000. International Journal of Heat and Fluid Flow, 2015, 55, 76-90.	1.1	31
62	Analysis and design of a drain water heat recovery storage unit based on PCM plates. Applied Energy, 2016, 179, 1006-1019.	5.1	31
63	Numerical simulation of solar collectors: The effect of nonuniform and nonsteady state of the boundary conditions. Solar Energy, 1991, 47, 359-373.	2.9	30
64	Numerical simulation of capillary-tube expansion devices behaviour with pure and mixed refrigerants considering metastable region. Part II: experimental validation and parametric studies. Applied Thermal Engineering, 2002, 22, 379-391.	3.0	30
65	A level-set model for mass transfer in bubbly flows. International Journal of Heat and Mass Transfer, 2019, 138, 335-356.	2.5	30
66	Numerical simulation of solid-liquid phase change phenomena. Computer Methods in Applied Mechanics and Engineering, 1991, 91, 1123-1134.	3.4	29
67	A level-set model for thermocapillary motion of deformable fluid particles. International Journal of Heat and Fluid Flow, 2016, 62, 324-343.	1.1	29
68	A parallel radial basis function interpolation method for unstructured dynamic meshes. Computers and Fluids, 2013, 80, 44-54.	1.3	27
69	Effect of collisions on the particle behavior in a turbulent square duct flow. Powder Technology, 2015, 269, 320-336.	2.1	27
70	Direct numerical simulation of backward-facing step flow at and expansion ratio 2. Journal of Fluid Mechanics, 2019, 863, 341-363.	1.4	27
71	Modelling of the heat exchangers of a small capacity, hot water driven, air-cooled H2O–LiBr absorption cooling machine. International Journal of Refrigeration, 2008, 31, 75-86.	1.8	25
72	Object-oriented simulation of reciprocating compressors: Numerical verification and experimental comparison. International Journal of Refrigeration, 2011, 34, 1989-1998.	1.8	25

#	Article	IF	CITATIONS
73	Wind speed effect on the flow field and heat transfer around a parabolic trough solar collector. Applied Energy, 2014, 130, 200-211.	5.1	25
74	Numerical study of droplet deformation in shear flow using a conservative level-set method. Chemical Engineering Science, 2019, 207, 153-171.	1.9	25
75	Analysis of different RANS models applied to turbulent forced convection. International Journal of Heat and Mass Transfer, 2007, 50, 3749-3766.	2.5	24
76	Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity. Computers and Fluids, 2010, 39, 1815-1831.	1.3	24
77	Numerical resolution of the liquid–vapour two-phase flow by means of the two-fluid model and a pressure based method. International Journal of Multiphase Flow, 2012, 43, 118-130.	1.6	24
78	A parallel MPI+OpenMP+OpenCL algorithm for hybrid supercomputations of incompressible flows. Computers and Fluids, 2013, 88, 764-772.	1.3	24
79	A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity. Journal of Computational Physics, 2013, 253, 405-417.	1.9	24
80	THREE-DIMENSIONAL NUMERICAL STUDY OF MELTING INSIDE AN ISOTHERMAL HORIZONTAL CYLINDER. Numerical Heat Transfer; Part A: Applications, 1997, 32, 531-553.	1.2	23
81	Parametric Study of Two-tank TES Systems for CSP Plants. Energy Procedia, 2015, 69, 1049-1058.	1.8	23
82	On the evolution of flow topology in turbulent Rayleigh-Bénard convection. Physics of Fluids, 2016, 28, .	1.6	23
83	On the feasibility of affordable high-fidelity CFD simulations for indoor environment design and control. Building and Environment, 2020, 184, 107144.	3.0	22
84	A DIRECT PARALLEL ALGORITHM FOR THE EFFICIENT SOLUTION OF THE PRESSURE-CORRECTION EQUATION OF INCOMPRESSIBLE FLOW PROBLEMS USING LOOSELY COUPLED COMPUTERS. Numerical Heat Transfer, Part B: Fundamentals, 2002, 41, 117-138.	0.6	21
85	A scalable parallel Poisson solver for three-dimensional problems with one periodic direction. Computers and Fluids, 2010, 39, 525-538.	1.3	21
86	Large eddy and direct numerical simulations of a turbulent water-filled differentially heated cavity of aspect ratio 5. International Journal of Heat and Mass Transfer, 2014, 77, 1084-1094.	2.5	21
87	DNS of the wall effect on the motion of bubble swarms. Procedia Computer Science, 2017, 108, 2008-2017.	1.2	21
88	Parametric studies on hermetic reciprocating compressors. International Journal of Refrigeration, 2005, 28, 253-266.	1.8	20
89	Analysis of the flamelet concept in the numerical simulation of laminar partially premixed flames. Combustion and Flame, 2008, 153, 71-83.	2.8	20
90	Fixed-Grid Modeling of Solid-Liquid Phase Change in Unstructured Meshes Using Explicit Time Schemes. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65, 27-52.	0.6	20

#	Article	IF	CITATIONS
91	Parallel load balancing strategy for Volume-of-Fluid methods on 3-D unstructured meshes. Journal of Computational Physics, 2015, 282, 269-288.	1.9	20
92	Numerical and experimental investigation of a vertical LiBr falling film absorber considering wave regimes and in presence of mist flow. International Journal of Thermal Sciences, 2016, 109, 342-361.	2.6	20
93	Heat and moisture insulation by means of air curtains: Application to refrigerated chambers. International Journal of Refrigeration, 2016, 68, 1-14.	1.8	20
94	Efficient CFD code implementation for the ARM-based Mont-Blanc architecture. Future Generation Computer Systems, 2018, 79, 786-796.	4.9	20
95	Numerical study of rising bubbles with path instability using conservative level-set and adaptive mesh refinement. Computers and Fluids, 2019, 187, 83-97.	1.3	20
96	A direct Schur–Fourier decomposition for the efficient solution of high-order Poisson equations on loosely coupled parallel computers. Numerical Linear Algebra With Applications, 2006, 13, 303-326.	0.9	19
97	Thermal and Fluid Dynamic Simulation of Automotive Fin-and-Tube Heat Exchangers, Part 1: Mathematical Model. Heat Transfer Engineering, 2008, 29, 484-494.	1.2	19
98	Development and comparison of different spatial numerical schemes for the radiative transfer equation resolution using three-dimensional unstructured meshes. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 264-273.	1.1	19
99	Improved semi-analytical method for air curtains prediction. Energy and Buildings, 2013, 66, 258-266.	3.1	19
100	On the CFD&HT of the Flow around a Parabolic Trough Solar Collector under Real Working Conditions. Energy Procedia, 2014, 49, 1379-1390.	1.8	19
101	Analysis of Different Numerical Schemes for the Resolution of Convection-Diffusion Equations using Finite-Volume Methods on Three-Dimensional Unstructured Grids. Part I: Discretization Schemes. Numerical Heat Transfer, Part B: Fundamentals, 2006, 49, 333-350.	0.6	18
102	Hybrid MPI+OpenMP parallelization of an FFT-based 3D Poisson solver with one periodic direction. Computers and Fluids, 2011, 49, 101-109.	1.3	18
103	Particulate Immersed Boundary Method for complex fluid–particle interaction problems with heat transfer. Computers and Mathematics With Applications, 2016, 71, 391-407.	1.4	18
104	A semi-implicit coupling technique for fluid–structure interaction problems with strong added-mass effect. Journal of Fluids and Structures, 2018, 80, 94-112.	1.5	18
105	Assessment of the symmetry-preserving regularization model on complex flows using unstructured grids. Computers and Fluids, 2012, 60, 108-116.	1.3	17
106	DNS and regularization modeling of a turbulent differentially heated cavity of aspect ratio 5. International Journal of Heat and Mass Transfer, 2013, 57, 171-182.	2.5	17
107	<i>A priori</i> study of subgrid-scale features in turbulent Rayleigh-Bénard convection. Physics of Fluids, 2017, 29, .	1.6	17
108	A new optimisation methodology used to study the effect of cover properties on night-time greenhouse climate. Biosystems Engineering, 2013, 116, 130-143.	1.9	16

#	Article	IF	CITATIONS
109	Three dimensional heat transfer analysis of combined conduction and radiation in honeycomb transparent insulation. Solar Energy, 2014, 105, 58-70.	2.9	16
110	LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers. Flow, Turbulence and Combustion, 2017, 99, 729-763.	1.4	16
111	Natural Convection in a Large, Inclined Channel With Asymmetric Heating and Surface Radiation. Journal of Heat Transfer, 2003, 125, 812-820.	1.2	15
112	A DIRECT SCHUR-FOURIER DECOMPOSITION FOR THE SOLUTION OF THE THREE-DIMENSIONAL POISSON EQUATION OF INCOMPRESSIBLE FLOW PROBLEMS USING LOOSELY COUPLED PARALLEL COMPUTERS. Numerical Heat Transfer, Part B: Fundamentals, 2003, 43, 467-488.	0.6	15
113	Numerical Experiments in Turbulent Natural Convection Using Two-Equation Eddy-Viscosity Models. Journal of Heat Transfer, 2008, 130, .	1.2	14
114	Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers. Combustion Theory and Modelling, 2003, 7, 525-544.	1.0	14
115	Thermal and fluidâ€dynamic behaviour of doubleâ€pipe condensers and evaporators—a numerical study. International Journal of Numerical Methods for Heat and Fluid Flow, 1995, 5, 781-795.	1.6	13
116	Analysis of the Dynamic Behavior of Refrigerated Spaces Using Air Curtains. Numerical Heat Transfer; Part A: Applications, 2009, 55, 553-573.	1.2	13
117	A numerical study of liquid atomization regimes by means of conservative level-set simulations. Computers and Fluids, 2019, 179, 137-149.	1.3	13
118	Thermal and Fluid Dynamic Simulation of Automotive Fin-and-Tube Heat Exchangers, Part 2: Experimental Comparison. Heat Transfer Engineering, 2008, 29, 495-502.	1.2	12
119	Numerical Study of the Transient Cooling Process of Water Storage Tanks under Heat Losses to the Environment. Numerical Heat Transfer; Part A: Applications, 2009, 55, 1051-1074.	1.2	12
120	Analysis of wall-function approaches using two-equation turbulence models. International Journal of Heat and Mass Transfer, 2008, 51, 4940-4957.	2.5	11
121	Dynamic Thermoelastic Analysis of Thermocline-like Storage Tanks. Energy Procedia, 2015, 69, 850-859.	1.8	11
122	Large Eddy Simulation of aTurbulent Diffusion Flame: Some Aspects of Subgrid Modelling Consistency. Flow, Turbulence and Combustion, 2017, 99, 209-238.	1.4	11
123	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> O and Carrol-H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>O at applications of cooling and heating.</mml:math 	1.8	11
124	International Journal of Refrigeration, 2021, 132, 156-171. Flow topology dynamics in a three-dimensional phase space for turbulent Rayleigh-Bénard convection. Physical Review Fluids, 2020, 5, .	1.0	11
125	Evaluation of a Small Capacity, Hot Water Driven, Air-Cooled H ₂ O-LiBr Absorption Machine. HVAC and R Research, 2007, 13, 59-75.	0.9	10
126	Optimising the Termofluids CFD code for petascale simulations. International Journal of Computational Fluid Dynamics, 2016, 30, 425-430.	0.5	10

#	Article	IF	CITATIONS
127	Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers. International Journal of Computational Fluid Dynamics, 2017, 31, 396-411.	0.5	10
128	DNS of Mass Transfer from Bubbles Rising in a Vertical Channel. Lecture Notes in Computer Science, 2019, , 596-610.	1.0	10
129	Analysis of Different Numerical Schemes for the Resolution of Convection-Diffusion Equations using Finite-Volume Methods on Three-Dimensional Unstructured Grids. Part II: Numerical Analysis. Numerical Heat Transfer, Part B: Fundamentals, 2006, 49, 351-375.	0.6	9
130	Numerical simulation of dehumidifying fin-and-tube heat exchangers: Semi-analytical modelling and experimental comparison. International Journal of Refrigeration, 2007, 30, 1266-1277.	1.8	9
131	Effect of contaminant properties and temperature gradients on the efficiency of transient gaseous contaminant removal from an enclosure : a numerical study. International Journal of Heat and Mass Transfer, 1998, 41, 3589-3609.	2.5	8
132	Unsteady natural convection cooling of a water storage tank with an internal gas flue. International Journal of Thermal Sciences, 2010, 49, 36-47.	2.6	8
133	DNS of falling droplets in a vertical channel. International Journal of Computational Methods and Experimental Measurements, 2017, 6, 398-410.	0.1	8
134	Modeling and Numerical Simulation of the Thermal and Fluid Dynamic Behavior of Hermetic Reciprocating Compressors—Part 1: Theoretical Basis. HVAC and R Research, 2003, 9, 215-235.	0.9	7
135	A low-dissipation convection scheme for the stable discretization of turbulent interfacial flow. Computers and Fluids, 2017, 153, 102-117.	1.3	7
136	A second-order time accurate semi-implicit method for fluid–structure interaction problems. Journal of Fluids and Structures, 2019, 86, 135-155.	1.5	7
137	Tetrahedral adaptive mesh refinement for twoâ€phase flows using conservative levelâ€set method. International Journal for Numerical Methods in Fluids, 2021, 93, 481-503.	0.9	7
138	Numerical Simulations of Thermal Energy Storage Systems with Phase Change Materials. , 2011, , .		7
139	Heat transfer simulation in vertical cylindrical enclosures for supercritical Rayleigh number and arbitrary side-wall conductivity. International Journal of Heat and Mass Transfer, 1999, 42, 323-343.	2.5	6
140	Modeling and Numerical Simulation of the Thermal and Fluid Dynamic Behavior of Hermetic Reciprocating Compressors—Part 2: Experimental Investigation. HVAC and R Research, 2003, 9, 237-249.	0.9	6
141	An OpenCL-based Parallel CFD Code for Simulations on Hybrid Systems with Massively-parallel Accelerators. Procedia Engineering, 2013, 61, 81-86.	1.2	6
142	Direct Numerical Simulation of Incompressible Flows on Unstructured Meshes Using Hybrid CPU/GPU Supercomputers. Procedia Engineering, 2013, 61, 87-93.	1.2	6
143	Advanced CFD&HT Numerical Modeling of Solar Tower Receivers. Energy Procedia, 2014, 49, 50-59.	1.8	6
144	Numerical simulation of non-adiabatic capillary tubes. Special emphasis on the near-saturation zone. International Journal of Refrigeration, 2015, 55, 153-167.	1.8	6

#	Article	IF	CITATIONS
145	Numerical simulation of roughness effects on the flow past a circular cylinder. Journal of Physics: Conference Series, 2016, 745, 032043.	0.3	6
146	A level-set aided single-phase model for the numerical simulation of free-surface flow on unstructured meshes. Computers and Fluids, 2016, 140, 97-110.	1.3	6
147	DNS of Drag-Force and Reactive Mass Transfer in Gravity-Driven Bubbly Flows. ERCOFTAC Series, 2020, , 119-125.	0.1	6
148	A CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readings. Energy and Buildings, 2022, 266, 112146.	3.1	6
149	Numerical experiments on laminar natural convection in rectangular cavities with and without honeycombâ€structures. International Journal of Numerical Methods for Heat and Fluid Flow, 1995, 5, 423-443.	1.6	5
150	Multidimensional and Unsteady Simulation of Fin-and-Tube Heat Exchangers. Numerical Heat Transfer; Part A: Applications, 2009, 56, 193-210.	1.2	5
151	New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection. Journal of Physics: Conference Series, 2016, 745, 032041.	0.3	5
152	A level-set method for thermal motion of bubbles and droplets. Journal of Physics: Conference Series, 2016, 745, 032113.	0.3	5
153	A fluid-structure interaction solver for the fluid flow through reed type valves. IOP Conference Series: Materials Science and Engineering, 2017, 232, 012032.	0.3	5
154	Direct Numerical Simulations and Symmetry-Preserving Regularization Simulations of the flow around a circular cylinder at Reynolds number 3900. , 2009, , .		5
155	Numerical and Experimental Study of a Flat Plate Solar Collector with Transparent Insulation and Overheating Protection System. , 2011, , .		5
156	Analysis of the heat transfer and friction factor correlations influence in the prediction of evaporating flows inside tubes. International Journal of Refrigeration, 2009, 32, 1744-1755.	1.8	4
157	Modelling of fin-and-tube evaporators considering non-uniform in-tube heat transfer. International Journal of Thermal Sciences, 2010, 49, 692-701.	2.6	4
158	Verification of Multidimensional and Transient CFD Solutions. Numerical Heat Transfer, Part B: Fundamentals, 2010, 57, 46-73.	0.6	4
159	Low-frequency variations in the wake of a circular cylinder atRe= 3900. Journal of Physics: Conference Series, 2011, 318, 042038.	0.3	4
160	Numerical Analysis of the Transpose Diffusive Term for Viscoplastic-Type Non-Newtonian Fluid Flows Using a Collocated Variable Arrangement. Numerical Heat Transfer, Part B: Fundamentals, 2015, 67, 410-436.	0.6	4
161	Numerical analysis of conservative unstructured discretisations for low Mach flows. International Journal for Numerical Methods in Fluids, 2017, 84, 309-334.	0.9	4
162	A time-average filtering technique to improve the efficiency of two-layer wall models for large eddy simulation in complex geometries. Computers and Fluids, 2019, 188, 44-59.	1.3	4

#	Article	IF	CITATIONS
163	New Strategies for Mitigating the Gray Area in Delayed-Detached Eddy Simulation Models. AIAA Journal, 2021, 59, 3331-3345.	1.5	4
164	DNS of Unequal Size Droplets Collision Using a Moving-Mesh/Level-Set Method. ERCOFTAC Series, 2020, , 103-109.	0.1	4
165	A novel Sigma–Delta ADC application oriented to test hermetic reciprocating compressors. Measurement Science and Technology, 2004, 15, 2207-2214.	1.4	3
166	Numerical simulation of turbulence at lower costs: Regularization modeling. Computers and Fluids, 2013, 80, 251-259.	1.3	3
167	Thermal Analysis of a Receiver for Linear Fresnel Reflectors. Energy Procedia, 2015, 69, 405-414.	1.8	3
168	Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method. Journal of Physics: Conference Series, 2016, 745, 032017.	0.3	3
169	Spectrally-Consistent Regularization of Navier–Stokes Equations. Journal of Scientific Computing, 2019, 79, 992-1014.	1.1	3
170	Schur Complement Methods for the solution of Poisson equation with unstructured meshes. Lecture Notes in Computational Science and Engineering, 2009, , 283-290.	0.1	3
171	Large-Eddy Simulations of Wind Turbine Dedicated Airfoils at High Reynolds Numbers. Research Topics in Wind Energy, 2014, , 147-152.	0.2	3
172	A parallel algorithm for the detailed numerical simulation of reactive flows. , 2000, , 389-396.		3
173	Direct Numerical Simulation of the flow over a sphere at Re = 3700. , 2009, , .		3
174	Advanced Multiphysics Modeling of Solar Tower Receivers Using Object-oriented Software and High Performance Computing Platforms. Energy Procedia, 2015, 69, 1231-1240.	1.8	2
175	Numerical analysis of the turbulent fluid flow through valves. Geometrical aspects influence at different positions. IOP Conference Series: Materials Science and Engineering, 2015, 90, 012026.	0.3	2
176	Simulation of the two-fluid model on incompressible flow with Fractional Step method for both resolved and unresolved scale interfaces. International Journal of Heat and Fluid Flow, 2015, 52, 15-27.	1.1	2
177	Partitioned semi-implicit methods for simulation of biomechanical fluid-structure interaction problems. Journal of Physics: Conference Series, 2016, 745, 032020.	0.3	2
178	DNS of the Rising Motion of a Swarm of Bubbles in a Confined Vertical Channel. ERCOFTAC Series, 2018, , 125-131.	0.1	2
179	TWO AND THREE DIMENSIONAL ASPECTS IN THE THERMAL BEHAVIOUR OF SOLAR COLLECTORS. , 1988, , 1076-1080.		2
180	Direct Numerical Simulation of Turbulent Natural Convection Flows Using PC Clusters. , 2004, ,		2

11

#	Article	IF	CITATIONS
181	Simulation of Flow and Heat Transfer in Impinging Jets Using RANS Models. , 2006, , .		2
182	On the implementation of flux limiters in algebraic frameworks. Computer Physics Communications, 2022, 271, 108230.	3.0	2
183	Numerical simulation of the thermal behaviour of heat exchangers and storage devices using multilevel and ADI techniques. Computer Methods in Applied Mechanics and Engineering, 1991, 91, 1203-1218.	3.4	1
184	Direct Numerical Simulation of Turbulent Natural Convection Flows on PC Clusters Using a Fourth-Order Symmetry-Preserving Method. , 1996, , 53-60.		1
185	Parallel sweep-based preconditioner for the solution of the linear Boltzmann transport equation. Computers and Fluids, 2013, 88, 884-890.	1.3	1
186	New Differential Operators and Discretization Methods for Eddy-viscosity Models for LES. Procedia Engineering, 2013, 61, 179-184.	1.2	1
187	Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces. Journal of Physics: Conference Series, 2016, 745, 032114.	0.3	1
188	Assessment and Comparison of a Recent Kinematic Sensitive Subgrid Length Scale in Hybrid RANS-LES. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2020, , 97-107.	0.2	1
189	On a Proper Tensor-Diffusivity Model for Large-Eddy Simulations of Buoyancy-Driven Flows. ERCOFTAC Series, 2020, , 417-423.	0.1	1
190	From extruded-2D to fully-3D geometries for DNS: a Multigrid-based extension of the Poisson solver. Lecture Notes in Computational Science and Engineering, 2010, , 219-226.	0.1	1
191	A parallel algorithm for the detailed numerical simulation of reactive flows. , 2000, , 389-396.		1
192	Conservative discretization of multiphase flow with high density ratios. , 2014, , .		1
193	A finite-volume/level-set interface capturing method for unstructured grids: simulations of bubbles rising through viscous liquids. WIT Transactions on Engineering Sciences, 2014, , .	0.0	1
194	Numerical simulation of fluid structure interaction in free-surface flows: the WEC case. Journal of Physics: Conference Series, 2021, 2116, 012122.	0.3	1
195	Electrical conductivity of concentrated LiBr Ethylene-Glycol and water ternary system. Journal of Physics: Conference Series, 2021, 2116, 012069.	0.3	1
196	Study of the influence of surfactants and surface treatments on the minimum wetting rate of falling films of aqueous LiBr and Carrol solutions. International Journal of Refrigeration, 2022, 141, 146-157.	1.8	1
197	Feasibility of CO2 Compressors for Light Commercial Appliances. HVAC and R Research, 2007, 13, 427-443.	0.9	0
198	Experimental Facility for the Study of Liquid Overfeed Fin-and-Tube Evaporators: Validation of Numerical Models. HVAC and R Research, 2008, 14, 221-238.	0.9	0

#	Article	IF	CITATIONS
199	New Implementations of Surface Tension Forces for PLIC-VOF Methods. , 2010, , .		Ο
200	Turbulent Flow in a Differentially Heated Cavity: Direct Numerical Simulation and Regularization Modeling. , 2010, , .		0
201	Symmetry-preserving regularization of wall-bounded turbulent flows. Journal of Physics: Conference Series, 2011, 318, 042060.	0.3	0
202	Direct numerical simulation of the flow over a sphere at <i>Re</i> = 3700–ÂCORRIGENDUM. Journal of Fluid Mechanics, 2011, 687, 606-606.	1.4	0
203	Numerical solutions for the fluid flow and the heat transfer of viscoplastic-type non-Newtonian fluids. Journal of Physics: Conference Series, 2012, 395, 012002.	0.3	0
204	Spectrally-consistent regularization modeling of turbulent natural convection flows. Journal of Physics: Conference Series, 2012, 395, 012123.	0.3	0
205	Transient and dynamic numerical simulation of the fluid flow through valves based on large eddy simulation models. , 2013, , 577-587.		0
206	A dynamic wall model for Large-Eddy simulations of wind turbine dedicated airfoils. Journal of Physics: Conference Series, 2014, 524, 012147.	0.3	0
207	On the solution of the full three-dimensional Taylor bubble problem by using a coupled Conservative Level Set - Moving Mesh method. Journal of Physics: Conference Series, 2016, 745, 032116.	0.3	0
208	On the extension of LES methods from incompressible to compressible turbulent flows with application to turbulent channel flow. Journal of Physics: Conference Series, 2016, 745, 032047.	0.3	0
209	New parallel method for adjacent disconnected unstructured 3D meshes. International Journal of Computational Fluid Dynamics, 2016, 30, 388-394.	0.5	0
210	Building Proper Invariants for Eddy-Viscosity Models. Springer Proceedings in Physics, 2016, , 79-82.	0.1	0
211	DNS and LES of Viscoplastic-Type Non-Newtonian Fluid Flows. Springer Proceedings in Physics, 2016, , 117-120.	0.1	0
212	Corrigendum to "Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000―[Computers and Fluids 147 (2017) 102–118]. Computers and Fluids, 2017, 156, 545.	1.3	0
213	Memory Aware Poisson Solver for Peta-Scale Simulations with one FFT Diagonalizable Direction. , 2017, , .		0
214	Study of Stochastic Models for Subgrid Dispersion in Lagrangian-Eulerian Formulation. ERCOFTAC Series, 2018, , 235-242.	0.1	0
215	Coherent Structures in a Flow Past a Circular Cylinder at Critical and Super-Critical Reynolds Numbers. ERCOFTAC Series, 2018, , 257-262.	0.1	0
216	A New Subgrid Characteristic Length for LES. ERCOFTAC Series, 2019, , 135-141.	0.1	0

#	Article	IF	CITATIONS
217	Direct Numerical Simulation of Turbulent Flows on a low cost PC Cluster. , 2006, , 109-116.		0
218	Parallel direct Poisson solver for DNS of complex turbulent flows using Unstructured Meshes. Lecture Notes in Computational Science and Engineering, 2010, , 227-234.	0.1	0
219	Parameter-Free Symmetry-Preserving Regularization Modelling of Turbulent Natural Convection Flows. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2010, , 369-375.	0.2	0
220	Regularization modeling of buoyancy-driven flows. ERCOFTAC Series, 2011, , 21-26.	0.1	0
221	Direct Numerical Simulation of Low-Mach Turbulent Natural Convection Flow in an Open Cavity of Aspect Ratio 4. ERCOFTAC Series, 2015, , 345-352.	0.1	0
222	New Differential Operators for Large-Eddy Simulation and Regularization Modeling. ERCOFTAC Series, 2015, , 29-35.	0.1	0
223	Flow Over a Realistic Car Model: WMLES Assessment and Turbulent Structures. ERCOFTAC Series, 2019, , 497-503.	0.1	0
224	Detailed prediction of fluid-solid coupled phenomena of turbulent flow through reed valves. IOP Conference Series: Materials Science and Engineering, 0, 604, 012064.	0.3	0
225	Improving DES Capabilities for Predicting Kelvin–Helmholtz Instabilities. Comparison with a Backward-Facing Step DNS. ERCOFTAC Series, 2020, , 457-462.	0.1	0