Covadonga RodrÃ-guez GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738590/publications.pdf

Version: 2024-02-01

Covadonga RodrÃguez

#	Article	IF	CITATIONS
1	Lipid characterization of 14 macroalgal species from Madeira Archipelago: implications for animal and human nutrition. Botanica Marina, 2022, 65, 51-67.	0.6	6
2	Metabolic and molecular evidence for long-chain PUFA biosynthesis capacity in the grass carp Ctenopharyngodon idella. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2022, 270, 111232.	0.8	5
3	In vivo biosynthesis of long-chain polyunsaturated fatty acids by the euryhaline rotifer (Brachionus) Tj ETQq1 1	0.784314 1.7	rgBJ /Overloci
4	Effects of Dietary n-3 LCPUFA Supplementation on the Hippocampus of Aging Female Mice: Impact on Memory, Lipid Raft-Associated Glutamatergic Receptors and Neuroinflammation. International Journal of Molecular Sciences, 2022, 23, 7430.	1.8	10
5	Taurine supplement improved growth performance and digestive capacity of pikeperch larvae. Aquaculture Research, 2022, 53, 5105-5114.	0.9	3
6	Polyunsaturated fatty acid metabolism in three fish species with different trophic level. Aquaculture, 2021, 530, 735761.	1.7	25
7	Assessment of lipid uptake and fatty acid metabolism of European eel larvae (Anguilla anguilla) determined by 14C in vivo incubation. Aquaculture, 2021, 531, 735858.	1.7	5
8	Effects of feeding with different live preys on the lipid composition, growth and survival of <i>Octopus vulgaris</i> paralarvae. Aquaculture Research, 2021, 52, 105-116.	0.9	4
9	Influence of Dietary Lipids and Environmental Salinity on the n-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost Solea senegalensis. Marine Drugs, 2021, 19, 254.	2.2	4
10	The lipid metabolism of Atlantic halibut (Hippoglossus hippoglossus, L.) larvae determined by 14C in vivo incubations. Aquaculture, 2021, 540, 736733.	1.7	3
11	Obesity and metabolic syndrome induce hyperfiltration, glomerulomegaly, and albuminuria in obese ovariectomized female mice and obese male mice. Menopause, 2021, 28, 1296-1306.	0.8	6
12	Fatty acid profiles and omega-3 long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis capacity of three dual purpose chicken breeds. Journal of Food Composition and Analysis, 2021, 102, 104005.	1.9	5
13	The ontogeny of greater amberjack digestive and antioxidant defence systems under different rearing conditions: A histological and enzymatic approach. Aquaculture Nutrition, 2020, 26, 1908-1925.	1.1	8
14	Esterification and modification of [1-14C] n-3 and n-6 polyunsaturated fatty acids in pikeperch (Sander) Tj ETQ salinities Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2020, 246-247, 110449	0 0 0 rgB 0.7	T /Overlock 10 7
15	Lipid metabolism in Tinca tinca and its n-3 LC-PUFA biosynthesis capacity. Aquaculture, 2020, 523, 735147.	1.7	22
16	Suitability of dual-purpose cockerels of 3 different genetic origins for fattening under free-range conditions. Poultry Science, 2019, 98, 6564-6571.	1.5	12
17	Functional diversification of teleost Fads2 fatty acyl desaturases occurs independently of the trophic level. Scientific Reports, 2019, 9, 11199.	1.6	28
18	Vitellogenin receptor and fatty acid profiles of individual lipid classes of oocytes from wild and captive-reared greater amberjack (Seriola dumerili) during the reproductive cycle. Theriogenology, 2019, 140, 73-83.	0.9	16

#	Article	IF	CITATIONS
19	Methyl-end desaturases with â^†12 and ω3 regioselectivities enable the de novo PUFA biosynthesis in the cephalopod Octopus vulgaris. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1134-1144.	1.2	17
20	Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain. Frontiers in Aging Neuroscience, 2019, 11, 346.	1.7	3
21	Influence of salinity and linoleic or α-linolenic acid based diets on ontogenetic development and metabolism of unsaturated fatty acids in pike perch larvae (Sander Iucioperca). Aquaculture, 2019, 500, 550-561.	1.7	17
22	Effect of Artemia inherent fatty acid metabolism on the bioavailability of essential fatty acids for Octopus vulgaris paralarvae development. Aquaculture, 2019, 500, 264-271.	1.7	18
23	Shewanella putrefaciensPdp11 probiotic supplementation as enhancer ofArtemian-3 HUFA contents and growth performance in Senegalese sole larviculture. Aquaculture Nutrition, 2018, 24, 548-561.	1.1	7
24	Metaâ€analysis approach to the effects of live prey on the growth of <i>Octopus vulgaris</i> paralarvae under culture conditions. Reviews in Aquaculture, 2018, 10, 3-14.	4.6	31
25	Fatty Acid Composition and Eicosanoid Levels (LTE ₄ and PGE ₂) of Human Milk from Normal Weight and Overweight Mothers. Breastfeeding Medicine, 2018, 13, 702-710.	0.8	19
26	Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Frontiers in Cellular Neuroscience, 2018, 12, 103.	1.8	7
27	Early weaning in meagre <i>Argyrosomus regius</i> : Effects on growth, survival, digestion and skeletal deformities. Aquaculture Research, 2017, 48, 5289-5299.	0.9	19
28	Comparative study on fatty acid metabolism of early stages of two crustacean species: Artemia sp. metanauplii and Grapsus adscensionis zoeae, as live prey for marine animals. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2017, 204, 53-60.	0.7	16
29	Assessment of stress and nutritional biomarkers in cultured Octopus vulgaris paralarvae: Effects of geographical origin and dietary regime. Aquaculture, 2017, 468, 558-568.	1.7	17
30	Comparative Study of Reproductive Development in Wild and Captive-Reared Greater Amberjack Seriola dumerili (Risso, 1810). PLoS ONE, 2017, 12, e0169645.	1.1	58
31	Significance of long chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine, 2017, 6, 25.	1.7	345
32	Preliminary Results on Light Conditions Manipulation in Octopus vulgaris (Cuvier, 1797) Paralarval Rearing. Fishes, 2017, 2, 21.	0.7	0
33	Membrane Lipid Microenvironment Modulates Thermodynamic Properties of the Na+-K+-ATPase in Branchial and Intestinal Epithelia in Euryhaline Fish In vivo. Frontiers in Physiology, 2016, 7, 589.	1.3	6
34	Fatty acid composition and age estimation of wild Octopus vulgaris paralarvae. Aquaculture, 2016, 464, 564-569.	1.7	27
35	Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlings. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 200, 62-68.	0.7	19
36	In vivo metabolism of unsaturated fatty acids in Sepia officinalis hatchlings. Aquaculture, 2016, 450, 67-73.	1.7	12

Covadonga RodrÃguez

#	Article	IF	CITATIONS
37	An insight on <i>Octopus vulgaris</i> paralarvae lipid requirements under rearing conditions. Aquaculture Nutrition, 2015, 21, 797-806.	1.1	24
38	Dietary probiotic supplementation (Shewanella putrefaciens Pdp11) modulates gut microbiota and promotes growth and condition in Senegalese sole larviculture. Fish Physiology and Biochemistry, 2014, 40, 295-309.	0.9	61
39	Benefits of probiotic administration on growth and performance along metamorphosis and weaning of Senegalese sole (Solea senegalensis). Aquaculture, 2014, 433, 183-195.	1.7	15
40	Beef tallow as an alternative to fish oil in diets for gilthead sea bream (<i>Sparus aurata</i>) juveniles: Effects on fish performance, tissue fatty acid composition, health and flesh nutritional value. European Journal of Lipid Science and Technology, 2014, 116, 571-583.	1.0	32
41	Characterization of deformed hatchlings of Octopus vulgaris obtained under captivity from a small female. Fisheries Research, 2014, 152, 62-65.	0.9	2
42	In vivo metabolism of unsaturated fatty acids in Octopus vulgaris hatchlings determined by incubation with 14C-labelled fatty acids added directly to seawater as protein complexes. Aquaculture, 2014, 431, 28-33.	1.7	34
43	Effects of increased tank bottom areas on cuttlefish (<i>Sepia officinalis</i> , L.) reproduction performance. Aquaculture Research, 2013, 44, 1017-1028.	0.9	17
44	Improvement of Polyunsaturated Fatty Acid Production in <i>Echium acanthocarpum</i> Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions. ISRN Biotechnology, 2013, 2013, 1-20.	1.9	8
45	A general survey of the feasibility of culturing the mysid Gastrosaccus roscoffensis (Peracarida,) Tj ETQq1 1 0.78	4314 rgB1 0.4	Qverlock 10
46	Influence of age of female gilthead seabream (Sparus aurata L.) broodstock on spawning quality throughout the reproductive season. Aquaculture, 2012, 350-353, 54-62.	1.7	25
47	Effect of salinity on the biosynthesis of n-3 long-chain polyunsaturated fatty acids in silverside Chirostoma estor. Fish Physiology and Biochemistry, 2012, 38, 1047-1057.	0.9	44
48	Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production. BMC Biotechnology, 2011, 11, 42.	1.7	16
49	Effects of dietary fish oil substitution by Echium oil on enterocyte and hepatocyte lipid metabolism of gilthead seabream (Sparus aurata L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2010, 155, 371-379.	0.7	13
50	Body lipid and fatty acid composition in male gilthead seabream broodstock at different stages of the reproductive cycle: effects of a diet lacking n-3 and n-6 HUFA. Aquaculture Nutrition, 2009, 15, 60-72.	1.1	8
51	Effect of dietary substitution of fish oil by <i>Echium</i> oil on growth, plasma parameters and body lipid composition in gilthead seabream (<i>Sparus aurata</i> L.). Aquaculture Nutrition, 2009, 15, 500-512.	1.1	39
52	Pigmentation, carotenoids, lipid peroxides and lipid composition of red porgy (<i>Pagrus pagrus</i>) skin reared under open-cage conditions. Aquaculture Research, 2009, 41, 1043.	0.9	4
53	Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Samples of Different Natures. Journal of Agricultural and Food Chemistry, 2008, 56, 4297-4303.	2.4	235
54	Pigmentation, carotenoids, lipid peroxides and lipid composition of skin of red porgy (Pagrus pagrus) fed diets supplemented with different astaxanthin sources. Aquaculture, 2007, 270, 218-230.	1.7	90

Covadonga RodrÃguez

#	Article	IF	CITATIONS
55	Lipid and fatty acid content in wild white seabream (Diplodus sargus) broodstock at different stages of the reproductive cycle. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2007, 146, 187-196.	0.7	67
56	Lipid dynamics and plasma level changes of 17β-estradiol and testosterone during the spawning season of gilthead seabream (Sparus aurata) females of different ages. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2006, 143, 180-189.	0.7	29
57	Isolation and characterization of enterocytes along the intestinal tract of the gilthead seabream (Sparus aurata L.). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 139, 21-31.	0.8	11
	Assessment of lipid and essential fatty acids requirements of black seabream (Spondyliosoma) Tj ETQq0 0 0 rgB	T /Overloc	k 10 Tf 50 62
58	Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 139, 619-629.	0.7	73
59	Temperature-activity relationship for the intestinal Na+-K+-ATPase of Sparus aurata. A role for the phospholipid microenvironment?. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2003, 173, 231-237.	0.7	16
60	The esterification and modification of n-3 and n-6 polyunsaturated fatty acids by hepatocytes and liver microsomes of turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2002, 132, 559-570.	0.7	35
61	Efficacy of dietary methyl esters of nâ^'3 HUFA vs. triacylglycerols of nâ^'3 HUFA by gilthead seabream (Sparus aurata L.) juveniles. Aquaculture, 2000, 190, 273-287.	1.7	29
62	Title is missing!. Fish Physiology and Biochemistry, 1999, 20, 125-134.	0.9	34
63	Title is missing!. Fish Physiology and Biochemistry, 1998, 18, 177-187.	0.9	84
64	The nâ^'3 highly unsaturated fatty acids requirements of gilthead seabream (Sparus aurata L.) larvae when using an appropriate DHA/EPA ratio in the diet. Aquaculture, 1998, 169, 9-23.	1.7	85
65	Influence of the ratio in rotifers on gilthead seabream (Sparus aurata) larval development. Aquaculture, 1997, 150, 77-89.	1.7	128
66	Modification of odd-chain length unsaturated fatty acids by hepatocytes of rainbow trout (Oncorhynchus mykiss) fed diets containing fish oil or olive oil. Lipids, 1997, 32, 611-619.	0.7	14
67	Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture, 1996, 147, 93-105.	1.7	33
68	Essential fatty acid requirements of larval gilthead sea bream, Sparus aurata (L.). Aquaculture Research, 1994, 25, 295-304.	0.9	13
69	n-3 HUFA requirement of larval gilthead seabream Sparus aurata when using high levels of eicosapentaenoic acid. Comparative Biochemistry and Physiology A, Comparative Physiology, 1994, 107, 693-698.	0.7	44