
Benjamin A S Van Mooy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Prochlorococcus</i> extracellular vesicles: molecular composition and adsorption to diverse microbes. Environmental Microbiology, 2022, 24, 420-435.	1.8	25
2	Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nature Ecology and Evolution, 2022, 6, 218-229.	3.4	21
3	Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation. Science, 2022, 376, 1487-1491.	6.0	39
4	Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. ISME Journal, 2021, 15, 520-533.	4.4	28
5	Whole Community Metatranscriptomes and Lipidomes Reveal Diverse Responses Among Antarctic Phytoplankton to Changing Ice Conditions. Frontiers in Marine Science, 2021, 8, .	1.2	4
6	Microbial production and consumption of hydrocarbons in the global ocean. Nature Microbiology, 2021, 6, 489-498.	5.9	56
7	Arsenolipids in Plankton from High- and Low-Nutrient Oceanic Waters Along a Transect in the North Atlantic. Environmental Science & Technology, 2021, 55, 5515-5524.	4.6	11
8	Production of Two Highly Abundant 2-Methyl-Branched Fatty Acids by Blooms of the Globally Significant Marine Cyanobacteria Trichodesmium erythraeum. ACS Omega, 2021, 6, 22803-22810.	1.6	2
9	Targeted and untargeted lipidomic analysis of haptophyte cultures reveals novel and divergent nutrient-stress adaptations. Organic Geochemistry, 2021, 161, 104315.	0.9	9
10	Using High-Sensitivity Lipidomics To Assess Microscale Heterogeneity in Oceanic Sinking Particles and Single Phytoplankton Cells. Environmental Science & Technology, 2021, 55, 15456-15465.	4.6	6
11	Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nature Communications, 2021, 12, 6634.	5.8	19
12	Iron Depletion in the Deep Chlorophyll Maximum: Mesoscale Eddies as Natural Iron Fertilization Experiments. Global Biogeochemical Cycles, 2021, 35, e2021GB007112.	1.9	20
13	Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnology and Oceanography, 2020, 65, 111-127.	1.6	39
14	Coordinated transformation of the gut microbiome and lipidome of bowhead whales provides novel insights into digestion. ISME Journal, 2020, 14, 688-701.	4.4	18
15	Nitric oxide mediates oxylipin production and grazing defense in diatoms. Environmental Microbiology, 2020, 22, 629-645.	1.8	12
16	Phospholipid turnover rates suggest that bacterial community growth rates in the open ocean are systematically underestimated. Limnology and Oceanography, 2020, 65, 1876-1890.	1.6	9
17	Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition of Particulate Organic Carbon in the Ocean. Frontiers in Marine Science, 2020, 7, .	1.2	72
18	The mutual interplay between calcification and coccolithovirus infection. Environmental Microbiology, 2019, 21, 1896-1915.	1.8	23

Benjamin A S Van Mooy

#	Article	IF	CITATIONS
19	Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME Journal, 2019, 13, 170-182.	4.4	81
20	Silicon limitation facilitates virus infection and mortality of marine diatoms. Nature Microbiology, 2019, 4, 1790-1797.	5.9	64
21	Nitric oxide production and antioxidant function during viral infection of the coccolithophore <i>Emiliania huxleyi</i> . ISME Journal, 2019, 13, 1019-1031.	4.4	20
22	Synthesis of high molar activity 33P-labeled phosphorous acid. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 885-888.	0.7	1
23	Biochemical diversity of glycosphingolipid biosynthesis as a driver of <i>Coccolithovirus</i> competitive ecology. Environmental Microbiology, 2019, 21, 2182-2197.	1.8	12
24	Coccolithovirus facilitation of carbon export in the North Atlantic. Nature Microbiology, 2018, 3, 537-547.	5.9	114
25	Arsenobetaine in Seawater: Depth Profiles from Selected Sites in the North Atlantic. Environmental Science & Technology, 2018, 52, 522-530.	4.6	21
26	The <i>Trichodesmium</i> microbiome can modulate host N ₂ fixation. Limnology and Oceanography Letters, 2018, 3, 401-408.	1.6	13
27	Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nature Communications, 2018, 9, 5179.	5.8	63
28	<i>Trichodesmium</i> physiological ecology and phosphate reduction in the western tropical South Pacific. Biogeosciences, 2018, 15, 5761-5778.	1.3	13
29	The molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters. Geochimica Et Cosmochimica Acta, 2018, 232, 244-264.	1.6	11
30	An autonomous, in situ lightâ€dark bottle device for determining community respiration and net community production. Limnology and Oceanography: Methods, 2018, 16, 323-338.	1.0	10
31	Epibionts dominate metabolic functional potential of <i>Trichodesmium</i> colonies from the oligotrophic ocean. ISME Journal, 2017, 11, 2090-2101.	4.4	65
32	Intact polar lipid export in the temperate western North Atlantic and Sargasso Sea. Organic Geochemistry, 2017, 114, 45-56.	0.9	9
33	Sinking phytoplankton associated with carbon flux in the Atlantic Ocean. Limnology and Oceanography, 2016, 61, 1172-1187.	1.6	53
34	Phosphorus starvation induces membrane remodeling and recycling in <i>Emiliania huxleyi</i> . New Phytologist, 2016, 211, 886-898.	3.5	78
35	LOBSTAHS: An Adduct-Based Lipidomics Strategy for Discovery and Identification of Oxidative Stress Biomarkers. Analytical Chemistry, 2016, 88, 7154-7162.	3.2	65
36	Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME Journal, 2016, 10, 968-978.	4.4	95

#	Article	IF	CITATIONS
37	The multiple fates of sinking particles in the North Atlantic Ocean. Global Biogeochemical Cycles, 2015, 29, 1471-1494.	1.9	76
38	Resource allocation by the marine cyanobacterium <scp><i>S</i></scp> <i>ynechococcus</i> <scp>WH</scp> 8102 in response to different nutrient supply ratios. Limnology and Oceanography, 2015, 60, 1634-1641.	1.6	23
39	Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Frontiers in Marine Science, 2015, 2, .	1.2	37
40	SAR11 lipid renovation in response to phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7767-7772.	3.3	87
41	Remodeling of intermediate metabolism in the diatom <i>Phaeodactylum tricornutum</i> under nitrogen stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 412-417.	3.3	218
42	Cryptic carbon and sulfur cycling between surface ocean plankton. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 453-457.	3.3	348
43	Dose-dependent regulation of microbial activity on sinking particles by polyunsaturated aldehydes: Implications for the carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5909-5914.	3.3	54
44	Understanding the Role of the Biological Pump in the Global Carbon Cycle: An Imperative for Ocean Science. Oceanography, 2014, 27, 10-16.	0.5	88
45	Physiological modifications of seston in response to physicochemical gradients within Lake Superior. Limnology and Oceanography, 2014, 59, 1011-1026.	1.6	17
46	Novel molecular determinants of viral susceptibility and resistance in the lipidome of <scp><i>E</i></scp> <i>miliania huxleyi</i> . Environmental Microbiology, 2014, 16, 1137-1149.	1.8	68
47	Isolation and characterization of lipid rafts in <scp><i>E</i></scp> <i>miliania huxleyi</i> : a role for membrane microdomains in host–virus interactions. Environmental Microbiology, 2014, 16, 1150-1166.	1.8	46
48	Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling, 2014, 30, 223-236.	0.8	16
49	Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte–virus interactions. Journal of Plankton Research, 2014, 36, 943-955.	0.8	8
50	Decoupling Physical from Biological Processes to Assess the Impact of Viruses on a Mesoscale Algal Bloom. Current Biology, 2014, 24, 2041-2046.	1.8	110
51	Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae). PLoS ONE, 2014, 9, e112134.	1.1	29
52	Molecular Ionâ€Independent Quantification of Polar Glycerolipid Classes in Marine Plankton Using Triple Quadrupole MS. Lipids, 2013, 48, 185-195.	0.7	65
53	An interlaboratory study of TEX ₈₆ and BIT analysis of sediments, extracts, and standard mixtures. Geochemistry, Geophysics, Geosystems, 2013, 14, 5263-5285.	1.0	76
54	Composition and fate of gas and oil released to the water column during the <i>Deepwater Horizon</i> oil spill. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20229-20234.	3.3	599

#	Article	IF	CITATIONS
55	Quorum sensing control of phosphorus acquisition in <i>Trichodesmium</i> consortia. ISME Journal, 2012, 6, 422-429.	4.4	108
56	Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19327-19332.	3.3	189
57	NONPHOSPHORUS LIPIDS IN PERIPHYTON REFLECT AVAILABLE NUTRIENTS IN THE FLORIDA EVERGLADES, USA ¹ . Journal of Phycology, 2012, 48, 303-311.	1.0	10
58	Microbial sources of intact polar diacylglycerolipids in the Western North Atlantic Ocean. Organic Geochemistry, 2011, 42, 803-811.	0.9	64
59	Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom <i>Thalassiosira pseudonana</i> . ISME Journal, 2011, 5, 1057-1060.	4.4	140
60	Abundance and diversity of heterotrophic bacterial cells assimilating phosphate in the subtropical North Atlantic Ocean. Environmental Microbiology, 2010, 12, 2773-2782.	1.8	26
61	Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition. Geochimica Et Cosmochimica Acta, 2010, 74, 6499-6516.	1.6	87
62	Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 2009, 458, 69-72.	13.7	662
63	An interlaboratory study of TEX ₈₆ and BIT analysis using highâ€performance liquid chromatography–mass spectrometry. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	52
64	Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton. Science, 2009, 326, 861-865.	6.0	229
65	Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnology and Oceanography, 2008, 53, 1327-1338.	1.6	350
66	Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. Limnology and Oceanography, 2008, 53, 78-88.	1.6	59
67	Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science, 2007, 316, 567-570.	6.0	547
68	Microbes and the Marine Phosphorus Cycle. Oceanography, 2007, 20, 110-116.	0.5	211
69	Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8607-8612.	3.3	345
70	Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification. Geochimica Et Cosmochimica Acta, 2002, 66, 457-465.	1.6	255