Miao Yu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3738390/miao-yu-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41	884	19	29
papers	citations	h-index	g-index
53	1,068 ext. citations	8	4.2 8
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
41	Reproducible untargeted metabolomics workflow for exhaustive MS2 data acquisition of MS1 features <i>Journal of Cheminformatics</i> , 2022 , 14, 6	8.6	1
40	Calculation and Experimental Validation of a Novel Approach Using Solubility Parameters as Indicators for the Extraction of Additives in Plastics. <i>Analytical Chemistry</i> , 2021 , 93, 14837-14843	7.8	O
39	Serum metabolic fingerprinting of psoriasis and psoriatic arthritis patients using solid-phase microextraction-liquid chromatography-high-resolution mass spectrometry. <i>Metabolomics</i> , 2021 , 17, 59	4.7	5
38	Tooth biomarkers to characterize the temporal dynamics of the fetal and early-life exposome. <i>Environment International</i> , 2021 , 157, 106849	12.9	3
37	Untargeted metabolomics profiling and hemoglobin normalization for archived newborn dried blood spots from a refrigerated biorepository. <i>Journal of Pharmaceutical and Biomedical Analysis</i> , 2020 , 191, 113574	3.5	7
36	Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: versus Postmortem Comparative Study. <i>ACS Chemical Neuroscience</i> , 2020 , 11, 1827-1840	5.7	9
35	Metabolism of SCCPs and MCCPs in Suspension Rice Cells Based on Paired Mass Distance (PMD) Analysis. <i>Environmental Science & Environmental Science & </i>	10.3	11
34	In Vivo SPME for Bioanalysis in Environmental Monitoring and Toxicology 2020 , 23-31		1
33	Untargeted high-resolution paired mass distance data mining for retrieving general chemical relationships. <i>Communications Chemistry</i> , 2020 , 3,	6.3	7
32	Metabolic profile of fish muscle tissue changes with sampling method, storage strategy and time. <i>Analytica Chimica Acta</i> , 2020 , 1136, 42-50	6.6	3
31	In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. <i>Environmental Pollution</i> , 2019 , 249, 109-115	9.3	26
30	Glycosylation of Tetrabromobisphenol A in Pumpkin. <i>Environmental Science & Environmental Science & En</i>	10.3	17
29	Structure/reaction directed analysis for LC-MS based untargeted analysis. <i>Analytica Chimica Acta</i> , 2019 , 1050, 16-24	6.6	18
28	Natural Silicon Isotopic Signatures Reveal the Sources of Airborne Fine Particulate Matter. <i>Environmental Science & Environmental Science & Environme</i>	10.3	17
27	Tracing the Biotransformation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil Using Stable Isotope-Assisted Metabolomics. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 103-109	11	27
26	Metabolome Profiling of Fish Muscle Tissue Exposed to Benzo[a]pyrene Using in Vivo Solid-Phase Microextraction. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 431-435	11	29
25	Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach. <i>Scientific Reports</i> , 2018 , 8, 6980	4.9	24

(2013-2018)

24	Hydroxylated and methoxylated polybrominated diphenyl ethers in a marine food web of Chinese Bohai Sea and their human dietary exposure. <i>Environmental Pollution</i> , 2018 , 233, 604-611	9.3	19
23	Biotransformation of tetrabromobisphenol A dimethyl ether back to tetrabromobisphenol A in whole pumpkin plants. <i>Environmental Pollution</i> , 2018 , 241, 331-338	9.3	17
22	Dechlorination and chlorine rearrangement of 1,2,5,5,6,9,10-heptachlorodecane mediated by the whole pumpkin seedlings. <i>Environmental Pollution</i> , 2017 , 224, 524-531	9.3	18
21	Distribution, Bioaccumulation, Trophic Transfer, and Influences of CeO Nanoparticles in a Constructed Aquatic Food Web. <i>Environmental Science & Environmental Science & Envir</i>	10.3	27
20	Towards on-site analysis of complex matrices by solid-phase microextraction-transmission mode coupled to a portable mass spectrometer via direct analysis in real time. <i>Analyst, The</i> , 2017 , 142, 2928-2	9535	57
19	Deposition of a Sorbent into a Recession on a Solid Support To Provide a New, Mechanically Robust Solid-Phase Microextraction Device. <i>Analytical Chemistry</i> , 2017 , 89, 8021-8026	7.8	35
18	Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Marine Organisms from Bohai Sea, China: Occurrence, Temporal Variations, and Trophic Transfer Behavior. <i>Environmental Science & Technology</i> , 2017 , 51, 4407-4414	10.3	86
17	Bioaccumulation of hexachlorobutadiene in pumpkin seedlings after waterborne exposure. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 1327-1335	4.3	4
16	Analysis of bromophenols in various aqueous samples using solid phase extraction followed by HPLC-MS/MS. <i>Talanta</i> , 2017 , 164, 57-63	6.2	21
15	Evaluation and reduction of the analytical uncertainties in GC-MS analysis using a boundary regression model. <i>Talanta</i> , 2017 , 164, 141-147	6.2	7
14	Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer. <i>Environmental Science & Environmental Sci</i>	10.3	68
13	Structure prediction of methyoxy-polybrominated diphenyl ethers (MeO-PBDEs) through GC-MS analysis of their corresponding PBDEs. <i>Talanta</i> , 2016 , 152, 9-14	6.2	2
12	Real Time Online Correction of Mass Shifts and Intensity Fluctuations in Extractive Electrospray Ionization Mass Spectrometry. <i>Analytical Chemistry</i> , 2015 , 87, 11962-6	7.8	9
11	Characterization of Three Tetrabromobisphenol-S Derivatives in Mollusks from Chinese Bohai Sea: A Strategy for Novel Brominated Contaminants Identification. <i>Scientific Reports</i> , 2015 , 5, 11741	4.9	17
10	Graphenized pencil lead fiber: facile preparation and application in solid-phase microextraction. Journal of Chromatography A, 2014 , 1325, 1-7	4.5	36
9	Reciprocal Transformation between Hydroxylated and Methoxylated Polybrominated Diphenyl Ethers in Young Whole Pumpkin Plants. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 236-241	11	19
8	Levels and distributions of hexachlorobutadiene and three chlorobenzenes in biosolids from wastewater treatment plants and in soils within and surrounding a chemical plant in China. <i>Environmental Science & Environmental S</i>	10.3	33
7	Trace analysis of mono-, di-, tri-substituted polyfluoroalkyl phosphates and perfluorinated phosphonic acids in sewage sludge by high performance liquid chromatography tandem mass spectrometry. <i>Talanta</i> , 2013 , 111, 170-7	6.2	22

6	Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) in biosolids from municipal wastewater treatment plants in China. <i>Chemosphere</i> , 2013 , 90, 2388-95	8.4	35
5	Identification of tetrabromobisphenol A allyl ether and tetrabromobisphenol A 2,3-dibromopropyl ether in the ambient environment near a manufacturing site and in mollusks at a coastal region. <i>Environmental Science & Description (2013)</i> , 2013, 47, 4760-7	10.3	58
4	Metabolites of 2,4,4\mathbb{W}ribrominated diphenyl ether (BDE-28) in pumpkin after in vivo and in vitro exposure. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	31
3	In vivo metabolism of 2,2¼4,4¼tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. <i>Environmental Science & Environmental Science & Environ</i>	10.3	51
2	In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. <i>ACS Environmental Au</i> ,		1
1	Reactomics: using mass spectrometry as a reaction detector		2