
Brian J Huser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738263/publications.pdf Version: 2024-02-01

RDIAN | HUSED

#	Article	IF	CITATIONS
1	Spatial and temporal variation in Arctic freshwater chemistry—Reflecting climateâ€induced landscape alterations and a changing template for biodiversity. Freshwater Biology, 2022, 67, 14-29.	1.2	20
2	Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (<i>Cyprinus carpio</i>). Inland Waters, 2022, 12, 33-46.	1.1	16
3	Field Application of Spent Lime Water Treatment Residual for the Removal of Phosphorus and other Pollutants in Urban Stormwater Runoff. Water (Switzerland), 2022, 14, 2135.	1.2	2
4	Low Dose Coagulant and Local Soil Ballast Effectively Remove Cyanobacteria (Microcystis) from Tropical Lake Water without Cell Damage. Water (Switzerland), 2021, 13, 111.	1.2	4
5	Washing and Heat Treatment of Aluminum-Based Drinking Water Treatment Residuals to Optimize Phosphorus Sorption and Nitrogen Leaching: Considerations for Lake Restoration. Water (Switzerland), 2021, 13, 2465.	1.2	3
6	Drinking water treatment residual as a ballast to sink Microcystis cyanobacteria and inactivate phosphorus in tropical lake water. Water Research, 2021, 207, 117792.	5.3	11
7	Preface: Restoration of eutrophic lakes: current practices and future challenges. Hydrobiologia, 2020, 847, 4343-4357.	1.0	36
8	Optimization of aluminum treatment efficiency to control internal phosphorus loading in eutrophic lakes. Water Research, 2020, 185, 116150.	5.3	21
9	New Insights Into Legacy Phosphorus From Fractionation of Streambed Sediment. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005763.	1.3	17
10	A comparison of aluminum dosing methods for reducing sediment phosphorus release in lakes. Journal of Environmental Management, 2020, 261, 110195.	3.8	32
11	Persistent and widespread long-term phosphorus declines in Boreal lakes in Sweden. Science of the Total Environment, 2018, 613-614, 240-249.	3.9	60
12	A newly developed injection method for aluminum treatment in eutrophic lakes: Effects on water quality and phosphorus binding efficiency. Lake and Reservoir Management, 2017, 33, 152-162.	0.4	25
13	Aluminum application to restore water quality in eutrophic lakes: maximizing binding efficiency between aluminum and phosphorus. Lake and Reservoir Management, 2017, 33, 143-151.	0.4	23
14	Ecological resilience in lakes and the conjunction fallacy. Nature Ecology and Evolution, 2017, 1, 1616-1624.	3.4	52
15	Ecological Instability in Lakes: A Predictable Condition?. Environmental Science & Technology, 2016, 50, 3285-3286.	4.6	10
16	Longevity and effectiveness of aluminum addition to reduce sediment phosphorus release and restore lake water quality. Water Research, 2016, 97, 122-132.	5.3	141
17	Effects of common carp (Cyprinus carpio) on sediment mixing depth and mobile phosphorus mass in the active sediment layer of a shallow lake. Hydrobiologia, 2016, 763, 23-33.	1.0	48
18	In-lake measures for phosphorus control: The most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Research, 2016, 97, 142-152.	5.3	121

BRIAN J HUSER

#	Article	IF	CITATIONS
19	Anthropogenic oligotrophication via liming: Long-term phosphorus trends in acidified, limed, and neutral reference lakes in Sweden. Ambio, 2014, 43, 104-112.	2.8	12
20	A simple model for predicting aluminum bound phosphorus formation and internal loading reduction in lakes after aluminum addition to lake sediment. Water Research, 2014, 53, 378-385.	5.3	42
21	Geo-Engineering in Lakes: A Crisis of Confidence?. Environmental Science & Technology, 2014, 48, 9977-9979.	4.6	74
22	Geoengineering in lakes: welcome attraction or fatal distraction?. Inland Waters, 2014, 4, 349-356.	1.1	76
23	Prediction of Reference Phosphorus Concentrations in Swedish Lakes. Environmental Science & Technology, 2013, 47, 1809-1815.	4.6	7
24	Variability in phosphorus binding by aluminum in alum treated lakes explained by lake morphology and aluminum dose. Water Research, 2012, 46, 4697-4704.	5.3	36
25	Lead, zinc, and chromium concentrations in acidic headwater streams in Sweden explained by chemical, climatic, and land-use variations. Biogeosciences, 2012, 9, 4323-4335.	1.3	19
26	Effects of alum treatment on water quality and sediment in the Minneapolis Chain of Lakes, Minnesota, USA. Lake and Reservoir Management, 2011, 27, 220-228.	0.4	37
27	Temporal and spatial trends for trace metals in streams and rivers across Sweden (1996–2009). Biogeosciences, 2011, 8, 1813-1823.	1.3	45
28	A method for comparative evaluation of whole-lake and inflow alum treatment. Water Research, 2007, 41, 1215-1224.	5.3	45
29	Phosphorus inactivation by aluminum in Lakes Gårdsjön and Häsvatten sediment during the industrial acidification period in Sweden. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62, 1702-1709.	0.7	32
30	Amount of phosphorus inactivated by alum treatments in Washington lakes. Limnology and Oceanography, 2000, 45, 226-230.	1.6	99