Matthew D Denton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3738129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Banksia</i> species (Proteaceae) from severely phosphorusâ€impoverished soils exhibit extreme efficiency in the use and reâ€mobilization of phosphorus. Plant, Cell and Environment, 2007, 30, 1557-1565.	5.7	144
2	Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 331, 241-255.	3.7	110
3	Long read reference genome-free reconstruction of a full-length transcriptome from Astragalus membranaceus reveals transcript variants involved in bioactive compound biosynthesis. Cell Discovery, 2017, 3, 17031.	6.7	95
4	Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 2010, 328, 133-143.	3.7	86
5	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
6	Do tillage systems influence nitrogen fixation in legumes? A review. Soil and Tillage Research, 2019, 185, 113-121.	5.6	67
7	The preceding root system drives the composition and function of the rhizosphere microbiome. Genome Biology, 2020, 21, 89.	8.8	61
8	Complete genome sequence of Rhizobium leguminosarum bv trifolii strain WSM2304, an effective microsymbiont of the South American clover Trifolium polymorphum Standards in Genomic Sciences, 2010, 2, 66-76.	1.5	60
9	Distribution, abundance and symbiotic effectiveness of Rhizobium leguminosarum bv. trifolii from alkaline pasture soils in South Australia. Australian Journal of Experimental Agriculture, 2000, 40, 25.	1.0	58
10	Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers Standards in Genomic Sciences, 2010, 2, 347-356.	1.5	53
11	Legume inoculant application methods: effects on nodulation patterns, nitrogen fixation, crop growth and yield in narrow-leaf lupin and faba bean. Plant and Soil, 2017, 419, 25-39.	3.7	46
12	Root distributions of Australian herbaceous perennial legumes in response to phosphorus placement. Functional Plant Biology, 2006, 33, 1091.	2.1	44
13	Nitrogen supply and sink demand modulate the patterns of leaf senescence in maize. Field Crops Research, 2018, 225, 92-103.	5.1	43
14	Mechanisms in plant growthâ€promoting rhizobacteria that enhance legume–rhizobial symbioses. Journal of Applied Microbiology, 2020, 129, 1133-1156.	3.1	43
15	Soil mineral nitrogen benefits derived from legumes and comparisons of the apparent recovery of legume or fertiliser nitrogen by wheat. Soil Research, 2017, 55, 600.	1.1	43
16	Evaluation of historic Australian wheat varieties reveals increased grain yield and changes in senescence patterns but limited adaptation to tillage systems. Field Crops Research, 2017, 206, 65-73.	5.1	41
17	Legume-oilseed intercropping in mechanised broadacre agriculture – a review. Field Crops Research, 2021, 260, 107980.	5.1	40
18	Nitrogen contributions from faba bean (Vicia faba L.) reliant on soil rhizobia or inoculation. Plant and Soil, 2013, 365, 363-374.	3.7	37

#	Article	IF	CITATIONS
19	Competition between inoculant and naturalised Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Australian Journal of Agricultural Research, 2002, 53, 1019.	1.5	36
20	A multi-site field evaluation of granular inoculants for legume nodulation. Soil Biology and Biochemistry, 2009, 41, 2508-2516.	8.8	36
21	Competitive abilities of common field isolates and a commercial strain of Rhizobium leguminosarum bv. trifolii for clover nodule occupancy. Soil Biology and Biochemistry, 2003, 35, 1039-1048.	8.8	35
22	Trichoderma harzianum Inoculation Reduces the Incidence of Clubroot Disease in Chinese Cabbage by Regulating the Rhizosphere Microbial Community. Microorganisms, 2020, 8, 1325.	3.6	31
23	High soil temperatures alter the rates of nitrification, denitrification and associated N2O emissions. Journal of Soils and Sediments, 2019, 19, 2176-2189.	3.0	30
24	Does phenotypic plasticity in carboxylate exudation differ among rare and widespread Banksia species (Proteaceae)?. New Phytologist, 2007, 173, 592-599.	7.3	29
25	The cropping systems of the Central Dry Zone of Myanmar: Productivity constraints and possible solutions. Agricultural Systems, 2019, 169, 31-40.	6.1	29
26	A highâ€quality genome of taro (<i>Colocasia esculenta</i> (L.) Schott), one of the world's oldest crops. Molecular Ecology Resources, 2021, 21, 68-77.	4.8	28
27	Response of juvenile Melaleuca halmaturorum to flooding: Management implications for a seasonal wetland, Bool Lagoon, South Australia. Marine and Freshwater Research, 1994, 45, 1395.	1.3	26
28	Psychological Factors Influencing Farmers' Intention to Adopt Agroforestry: A Structural Equation Modeling Approach. Journal of Sustainable Forestry, 2020, 39, 854-865.	1.4	25
29	Transgenic alfalfa secretes a fungal endochitinase protein to the rhizosphere. Plant and Soil, 2005, 269, 233-243.	3.7	24
30	The potential for rhizobial inoculation to increase soybean grain yields on acid soils in Ethiopia. Soil Science and Plant Nutrition, 2017, 63, 441-451.	1.9	24
31	Nitrogen fertilization modifies maize yield response to tillage and stubble in a sub-humid tropical environment. Field Crops Research, 2018, 223, 113-124.	5.1	23
32	Strategies to acquire and use phosphorus in phosphorus-impoverished and fire-prone environments. Plant and Soil, 2022, 476, 133-160.	3.7	22
33	Alfalfa monocultures promote soil organic carbon accumulation to a greater extent than perennial grass monocultures or grass-alfalfa mixtures. Ecological Engineering, 2019, 131, 53-62.	3.6	20
34	Agronomic and environmental drivers of population size and symbiotic performance of Rhizobium leguminosarum bv. viciae in Mediterranean-type environments. Crop and Pasture Science, 2012, 63, 467.	1.5	18
35	Largeâ€scale Trichoderma diversity was associated with ecosystem, climate and geographic location. Environmental Microbiology, 2020, 22, 1011-1024.	3.8	17
36	The diversity of arbuscular mycorrhizas of selected AustralianFabaceae. Plant Biosystems, 2008, 142, 420-427.	1.6	16

#	Article	IF	CITATIONS
37	Forage options to sustainably intensify smallholder farming systems on tropical sandy soils. A review. Agronomy for Sustainable Development, 2019, 39, 1.	5.3	16
38	Soil phosphorus supply affects nodulation and N:P ratio in 11 perennial legume seedlings. Crop and Pasture Science, 2011, 62, 992.	1.5	15
39	Assessing smallholder farmers' motivation to adopt agroforestry using a multi-group structural equation modeling approach. Agroforestry Systems, 2020, 94, 2199-2211.	2.0	15
40	Ability to produce indole acetic acid is associated with improved phosphate solubilising activity of rhizobacteria. Archives of Microbiology, 2021, 203, 3825-3837.	2.2	15
41	N2O and N2 emissions from denitrification respond differently to temperature and nitrogen supply. Journal of Soils and Sediments, 2018, 18, 1548-1557.	3.0	14
42	Contrasting water use patterns of two important agroforestry tree species in the Mt Elgon region of Uganda. Australian Forestry, 2019, 82, 57-65.	0.9	14
43	Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 2022, 12, 8381.	3.3	14
44	Microbial communities along the soil-root continuum are determined by root anatomical boundaries, soil properties, and root exudation. Soil Biology and Biochemistry, 2022, 171, 108721.	8.8	14
45	Impact of seedâ€applied pesticides on rhizobial survival and legume nodulation. Journal of Applied Microbiology, 2020, 129, 389-399.	3.1	13
46	Dissimilatory nitrate reduction to ammonium increased with rising temperature. Biology and Fertility of Soils, 2021, 57, 363-372.	4.3	13
47	Is phosphate solubilizing ability in plant growthâ€promoting rhizobacteria isolated from chickpea linked to their ability to produce ACC deaminase?. Journal of Applied Microbiology, 2021, 131, 2416-2432.	3.1	13
48	Root depth development in tropical perennial forage grasses is related to root angle, root diameter and leaf area. Plant and Soil, 2020, 456, 145-158.	3.7	12
49	Quantifying the value of adopting a post-rice legume crop to intensify mixed smallholder farms in Southeast Asia. Agricultural Systems, 2020, 177, 102690.	6.1	11
50	The effect of ploidy number on vigor, productivity, and potential adaptation to climate change in annual <i>Medicago</i> species. Crop Science, 2021, 61, 89-103.	1.8	11
51	Nodulation of Medicago truncatula and Medicago polymorpha in two pastures of contrasting soil pH and rhizobial populations. Applied Soil Ecology, 2007, 35, 441-448.	4.3	10
52	Nitrifying Microbes in the Rhizosphere of Perennial Grasses Are Modified by Biological Nitrification Inhibition. Microorganisms, 2020, 8, 1687.	3.6	10
53	Near-Complete Genomes of Two <i>Trichoderma</i> Species: A Resource for Biological Control of Plant Pathogens. Molecular Plant-Microbe Interactions, 2020, 33, 1036-1039.	2.6	10
54	Insufficient potassium and sulfur supply threaten the productivity of perennial forage grasses in smallholder farms on tropical sandy soils. Plant and Soil, 2021, 461, 617-630.	3.7	9

#	Article	IF	CITATIONS
55	Large-scale screening of rhizobacteria to enhance the chickpea-Mesorhizobium symbiosis using a plant-based strategy. Rhizosphere, 2021, 18, 100361.	3.0	9
56	Nitrogen fixation in annual Trifolium species in alkaline soils as assessed by the 15N natural abundance method. Crop and Pasture Science, 2011, 62, 712.	1.5	8
57	A quantitative analysis of root distortion from contrasting wheat cropping systems. Plant and Soil, 2016, 404, 173-192.	3.7	8
58	Rainfall-related opportunities, risks and constraints to rainfed cropping in the Central Dry Zone of Myanmar as defined by soil water balance modelling. Agricultural Systems, 2018, 164, 47-57.	6.1	8
59	Changes in soil-pores and wheat root geometry due to strategic tillage in a no-tillage cropping system. Soil Research, 2021, 59, 83.	1.1	7
60	Soil environment influences plant growth-promotion traits of isolated rhizobacteria. Pedobiologia, 2022, 90, 150785.	1.2	6
61	Strategic Nitrogen Supply Alters Canopy Development and Improves Nitrogen Use Efficiency in Dryland Wheat. Agronomy Journal, 2017, 109, 1072-1081.	1.8	5
62	Canopy development and grain yield of dryland wheat is modified by strategic nitrogen supply and stubble management. European Journal of Agronomy, 2018, 99, 195-205.	4.1	5
63	Symbiotic effectiveness, ecological adaptation and phylogenetic diversity of chickpea rhizobia isolated from a large-scale Australian soil collection. Plant and Soil, 2021, 469, 49-71.	3.7	5
64	Patterns of foliar and soil nitrogen isotope composition of Caragana microphylla, a leguminous shrub species in the semi-arid regions of northern China. Biogeochemistry, 2019, 146, 257-269.	3.5	4
65	No evidence of regulation in root-mediated iron reduction in two Strategy I cluster-rooted Banksia species (Proteaceae). Plant and Soil, 2021, 461, 203-218.	3.7	4
66	Farmers' Knowledge and Perceptions of Management and the Impact of Trees on-Farm in the Mt. Elgon Region of Uganda. Small-Scale Forestry, 2022, 21, 71-92.	1.7	4
67	Microbiomes across root compartments are shaped by inoculation with a fungal biological control agent. Applied Soil Ecology, 2022, 170, 104230.	4.3	4
68	Soil surface pressure reduces post-emergent shoot growth in wheat. Plant and Soil, 2017, 413, 127-144.	3.7	3
69	Nitrogen enrichment intensifies legume reliance on root phosphatase activity but weakens inter-specific correlations between N2 fixation and mycorrhizal colonization. Plant and Soil, 2021, 465, 503-514.	3.7	3
70	Long-Term Monocultures of American Ginseng Change the Rhizosphere Microbiome by Reducing Phenolic Acids in Soil. Agriculture (Switzerland), 2022, 12, 640.	3.1	3
71	A novel framework for identifying the interactions between biophysical and social components of an agricultural system: a guide for improving wheat production in Haryana, NW India. Journal of Agricultural Education and Extension, 2018, 24, 263-284.	2.2	2
72	Soil metabolomics reveal complex interactions between Arthrobacter ureafaciens and Trichoderma harzianum when co-inoculated on wheat. Pedobiologia, 2021, 85-86, 150723.	1.2	2

#	Article	IF	CITATIONS
73	Rhizobial diversity is associated with inoculation history at a two-continent scale. FEMS Microbiology Ecology, 2022, 98, .	2.7	2
74	Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production. Soil Systems, 2022, 6, 58.	2.6	2
75	Plant Nitrogen and Phosphorus Resorption in Response to Varied Legume Proportions in a Restored Grassland. Plants, 2020, 9, 292.	3.5	1
76	Genotypic and seasonal variation in root depth development during establishment of C4 perennial grass ecotypes. Crop and Pasture Science, 2021, 72, 913.	1.5	0