Tomas Necas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/373779/publications.pdf

Version: 2024-02-01

932766 996533 64 329 10 15 citations h-index g-index papers 64 64 64 336 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fungal Trunk Pathogens Associated With <i>Juglans regia</i> in the Czech Republic. Plant Disease, 2020, 104, 761-771.	0.7	25
2	Genetic Diversity among Some Walnut (Juglans regia L.) Genotypes by SSR Markers. Sustainability, 2021, 13, 6830.	1.6	23
3	Characterization of cornelian cherry (Cornus mas L.) genotypes - genetic resources for food production in Czech Republic. Genetika, 2014, 46, 915-924.	0.1	22
4	Evaluation of Protein and Antioxidant Content in Apricot Kernels as a Sustainable Additional Source of Nutrition. Sustainability, 2021, 13, 4742.	1.6	22
5	First Report of <i>Little cherry virus 1</i> Infecting Apricot in the Czech Republic. Plant Disease, 2017, 101, 845.	0.7	21
6	Analysis of Phenolic Compounds and Some Important Analytical Properties in Selected Apricot Genotypes. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1446-1452.	0.5	17
7	Morphological and Biochemical Characterization of Diverse Strawberry Tree (Arbutus unedo L.) Genotypes from Northern Turkey. Agronomy, 2020, 10, 1581.	1.3	16
8	Evaluation of Pollen Quality and Self-Fertility in Selected Cultivars of Asian and European Pears. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 375-382.	0.5	15
9	Use of Combined MSAP and NGS Techniques to Identify Differentially Methylated Regions in Somaclones: A Case Study of Two Stable Somatic Wheat Mutants. PLoS ONE, 2016, 11, e0165749.	1.1	15
10	Identification of 17 â€~ <i>Candidatus</i> Phytoplasma pyri' genotypes based on the diversity of the <i>imp</i> gene sequence. Plant Pathology, 2018, 67, 971-977.	1.2	11
11	Determination of the pomological and nutritional properties of selected plum cultivars and minor fruit species. Zahradnictvi (Prague, Czech Republic: 1992), 2020, 47, 181-193.	0.3	10
12	THE POSSIBILITY OF ESFY PHYTOPLASMA TRANSMISSION: THROUGH FLOWERS AND SEEDS. Acta Horticulturae, 2008, , 443-448.	0.1	9
13	Sustainable Cornelian Cherry Production in Montenegro: Importance of Local Genetic Resources. Sustainability, 2020, 12, 8651.	1.6	8
14	Determination of Selected Beneficial Substances in Peach Fruits. Sustainability, 2021, 13, 14028.	1.6	8
15	Effect of Methyl Jasmonate, Cytokinin, and Lavender Oil on Antioxidant Enzyme System of Apricot Fruit (Prunus armeniaca L.). Sustainability, 2021, 13, 8565.	1.6	7
16	Health-benefitting Biologically Active Substances in Edible Apricot Flowers. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1372-1377.	0.5	7
17	THE APRICOT BREEDING PROGRAMME AT THE HORTICULTURE FACULTY IN LEDNICE. Acta Horticulturae, 2006, , 145-148.	0.1	6
18	Assessment of Antioxidants in Selected Plant Rootstocks. Antioxidants, 2020, 9, 209.	2.2	6

#	Article	IF	CITATIONS
19	VEGETATIVE PROPAGATION OF PEAR AND QUINCE ROOTSTOCKS USING HARDWOOD CUTTINGS. Acta Horticulturae, 2008, , 701-706.	0.1	5
20	Resistance of Chinese asters (Callistephus chinensis Nees.) to Fusarium wilts (Fusarium oxysporum f.) Tj ETQq0 C (Prague, Czech Republic: 1992), 2008, 35, 151-161.	0 rgBT /O 0.3	verlock 10 T 5
21	Detection of phytoplasma ESFY in apricot trees using phloem and petioles. Plant Protection Science, 2005, 41, 132-140.	0.7	5
22	The Effect of Phytoplasma Disease Caused by â€~Candidatus Phytoplasma prunorum' on the Phenological and Pomological Traits in Apricot Trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 46, 107-114.	0.5	5
23	PROPAGATION OF DIFFERENT STONE FRUIT ROOTSTOCKS USING SOFTWOOD AND HARDWOOD CUTTINGS. Acta Horticulturae, 2013, , 127-137.	0.1	4
24	High-Throughput Sequencing Analysis of the Bacterial Community in Stone Fruit Phloem Tissues Infected by "Candidatus Phytoplasma prunorum― Microbial Ecology, 2019, 77, 664-675.	1.4	4
25	CIELAB analysis and quantitative correlation of total anthocyanin content in European and Asian plums. European Journal of Horticultural Science, 2021, 86, 453-460.	0.3	4
26	Pomological Traits and Genome Size of Prunus armeniaca L. Considering to Geographical Origin. Horticulturae, 2022, 8, 199.	1.2	4
27	EVALUATION OF PRECOCIOUS DECLINE OF YOUNG APRICOT ORCHARDS IN THE CZECH REPUBLIC. Acta Horticulturae, 2012, , 175-182.	0.1	3
28	RESISTANCE BREEDING OF APRICOTS AT THE HORTICULTURAL FACULTY IN LEDNICE. Acta Horticulturae, 2011, , 123-128.	0.1	3
29	Comparison of four techniques for plum pox virus detection. Journal of Plant Diseases and Protection, 2016, 123, 311-315.	1.6	2
30	Use of plant growth regulators in fruit nursery production of plums and sweet cherries. Acta Horticulturae, 2018, , 299-307.	0.1	2
31	Agro-Morphological and Biochemical Characterization of Wild Prunus spinosa L. Subsp. dasyphylla (Schur) Domin Genotypes Naturally Grown in Western Black Sea Region of Turkey. Agronomy, 2020, 10, 1748.	1.3	2
32	Evaluation of certain pomological and phenological traits of selected asian pear varieties growing in Middle European conditions. Zahradnictvi (Prague, Czech Republic: 1992), 2020, 47, 81-92.	0.3	2
33	The effect of clay amendment on substrate properties and growth of woody plants. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 60, 163-170.	0.2	2
34	NEW SHARKA RESISTANT APRICOTS AT THE HORTICULTURAL FACULTY IN LEDNICE. Acta Horticulturae, 2015, , 105-110.	0.1	2
35	Comparison of real-time PCR protocols in detection and quantification of fruit tree 16SrX group phytoplasmas. Genetika, 2016, 48, 629-642.	0.1	2
36	COMPARISON OF METHODS OF ISOLATING DNA FOR ESFY PHYTOPLASMA DETECTION. Acta Horticulturae, 2009, , 213-220.	0.1	2

#	Article	IF	CITATIONS
37	STUDY OF SYMPTOMS VARIABILITY AFTER ARTIFICIAL INOCULATION BY PHYTOPLASMA ESFY IN DIFFERENT PRUNUS SPECIES. Acta Horticulturae, 2012, , 123-129.	0.1	2
38	Induction of Lateral Branching of Sweet Cherry and Plum in Fruit Nursery. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2019, 47, 962-969.	0.5	2
39	Evaluation of pomological and qualitative traits in plum cultivars delivered from <i>Prunus domestica</i> , <i>P.Āsalicina</i> , <i>P. cerasifera</i> , and their hybrids. Acta Horticulturae, 2019, , 171-180.	0.1	2
40	Improving the quality of nursery apple and pear trees with the use of different plant growth regulators. European Journal of Horticultural Science, 2020, 85, 430-438.	0.3	2
41	SELECTION OF WOODY INDICATORS AND THE OPTIMUM PLANT MATERIAL AND SAMPLING TIME FOR PHYTOPLASMA ESFY DETECTION. Acta Horticulturae, 2006, , 101-106.	0.1	1
42	EVALUATION OF THE GROWTH AND PHENOLOGICAL TRAITS OF TEN ROOTSTOCKS IN COMBINATION WITH PEAR CULTIVARS 'HOSUI', 'YALI' AND 'CONFERENCE'. Acta Horticulturae, 2015, , 123-130.	0.1	1
43	Determination of synergistic interactions betweenPlum pox virusand â€~CandidatusPhytoplasma prunorum' in infected peach trees. Acta Horticulturae, 2017, , 45-52.	0.1	1
44	AFLP Molecular Identification and Genetic Relationship of Chinese and Japanese Pear Cultivars Grown in Middle European Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 369-374.	0.5	1
45	Use of different plant growth regulators for control of shoot branching in apple and pear trees. Acta Horticulturae, 2018, , 225-232.	0.1	1
46	Molecular characterisation of little cherry virus 1 infecting apricots in the Czech Republic. European Journal of Plant Pathology, 2020, 158, 83-97.	0.8	1
47	Seed-Propagated Summer Apples: Great Morphological and Biochemical Diversity. Sustainability, 2021, 13, 8359.	1.6	1
48	Evaluation of non-traditional plum cultivars for growing in the Czech conditions. Acta Horticulturae, 2021, , 113-124.	0.1	1
49	Propagation of Selected Pear and Quince Rootstocks By Hardwood Cuttings. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2016, 64, 1211-1217.	0.2	1
50	Evaluation of Presence and Concentration of PPV in Rootstocks Derived from Prunus davidiana (Carr.) Franch. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2019, 67, 121-131.	0.2	1
51	INFLUENCE OF THE TIME OF SAMPLING ON DETECTION OF ESFY PHYTOPLASMA. Acta Horticulturae, 2008, , 435-442.	0.1	1
52	Evaluation of selected nursery traits in combination rootstocks and variety in Asian pear trees. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 60, 171-180.	0.2	1
53	Use of real-time PCR for the characterization of †variable symptoms in ESFY phytoplasma disease. Acta Horticulturae, 2016, , 57-62.	0.1	1
54	Comparison of selected qualitative characteristics of American, French and Czech apricot cultivars. Acta Horticulturae, 2020, , 159-168.	0.1	1

#	Article	IF	CITATIONS
55	New promising apricot hybrids from Faculty of Horticulture in Lednice. Acta Horticulturae, 2020, , 169-178.	0.1	1
56	ON-LINE GRAFTED SOFTWOOD CUTTINGS OF ROOTSTOCKS FOR APRICOTS. Acta Horticulturae, 2009, , 299-304.	0.1	0
57	â€~CandidatusPhytoplasma prunorum' – a pathogen spreading uncontrollably in apricot orchards in the Czech Republic. Acta Horticulturae, 2015, , 131-136.	0.1	0
58	GENETIC RESOURCES OF PRUNUS ARMENIACA L. IN THE CZECH REPUBLIC. Acta Horticulturae, 2004, , 589-592.	0.1	0
59	Preliminary results of auxin and brassinosteroid application on â€~ <i>Candidatus</i> Phytoplasma prunorum' infected plants. Phytopathogenic Mollicutes, 2019, 9, 169.	0.1	0
60	Fungi detected in trunk of stone fruits in the Czech Republic. Agrártudományi KözlemÃ@nyek, 2017, , 121-127.	0.1	0
61	The Use of Phytohormones in Production of Fruit Tree Rootstocks in Nursery Without Irrigation. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2019, 67, 463-470.	0.2	0
62	Potential Use of Spring Budding Techniques in Production of Plum Nursery Trees. Proceedings of the Latvian Academy of Sciences, 2019, 73, 220-225.	0.0	0
63	A survey of †Candidatus Phytoplasma pyri' isolates in the Czech Republic based on imp gene genotyping. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12602.	0.5	0
64	Quantification of 'Candidatus Phytoplasma prunorum' in apricot trees exhibiting uneven European stone fruit yellows symptoms. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2022, 70, 31-36.	0.2	0