
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3737660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wide Blue Phase Range in a Hydrogenâ€Bonded Selfâ€Assembled Complex of Chiral Fluoroâ€6ubstituted Benzoic Acid and Pyridine Derivative. Advanced Materials, 2009, 21, 2050-2053.	11.1	185
2	Hysteresisâ€Free Blue Phase Liquidâ€Crystalâ€Stabilized by ZnS Nanoparticles. Small, 2012, 8, 2189-2193.	5.2	140
3	Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light. Applied Physics Letters, 2008, 93, .	1.5	113
4	Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound. Chemical Communications, 2014, 50, 691-694.	2.2	86
5	Wide blue phase range and electro-optical performances of liquid crystalline composites doped with thiophene-based mesogens. Journal of Materials Chemistry, 2012, 22, 2383-2386.	6.7	83
6	Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. Journal of Materials Chemistry, 2012, 22, 19629.	6.7	82
7	Light-controllable reflection wavelength of blue phase liquid crystals doped with azobenzene-dimers. Chemical Communications, 2013, 49, 10097.	2.2	75
8	Polymer-stabilized nanoparticle-enriched blue phase liquid crystals. Journal of Materials Chemistry C, 2013, 1, 6526.	2.7	75
9	Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure. Journal of Materials Chemistry, 2010, 20, 4094.	6.7	69
10	Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. ACS Applied Materials & Interfaces, 2019, 11, 46124-46131.	4.0	51
11	Effect of lateral fluoro substituents of rodlike tolanecyano mesogens on blue phase temperature ranges. Soft Matter, 2013, 9, 1172-1177.	1.2	48
12	Binary "island―shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates. Nanoscale, 2018, 10, 14220-14229.	2.8	48
13	Effects of 1,3,4-oxadiazoles with different rigid cores on the thermal and electro-optical performances of liquid crystalline blue phases. Liquid Crystals, 2012, 39, 629-638.	0.9	46
14	Effects of symmetrically 2,5-disubstituted 1,3,4-oxadiazoles on the temperature range of liquid crystalline blue phases: a systematic study. Liquid Crystals, 2013, 40, 354-367.	0.9	45
15	Optical intensity-driven reversible photonic bandgaps in self-organized helical superstructures with handedness inversion. Journal of Materials Chemistry C, 2017, 5, 3678-3683.	2.7	44
16	Spinâ€Dependent Charge Transport in 1D Chiral Hybrid Leadâ€Bromide Perovskite with High Stability. Advanced Functional Materials, 2021, 31, 2104605.	7.8	44
17	Highly Efficient Spinâ€Filtering Transport in Chiral Hybrid Copper Halides. Angewandte Chemie - International Edition, 2021, 60, 23578-23583.	7.2	43
18	Third-order nonlinear optical properties of a novel series of D-Ï€-A pyrene-aldehyde derivatives. Journal of Nonlinear Optical Physics and Materials, 2016, 25, 1650014.	1,1	39

#	Article	lF	CITATIONS
19	Effects of a chemically modified multiwall carbon nanotubes on electro-optical properties of PDLC films. Liquid Crystals, 2018, 45, 1023-1031.	0.9	35
20	Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science, 2007, 105, 2973-2977.	1.3	34
21	Synthesis of chiral azobenzene derivatives and the performance in photochemical control of blue phase liquid crystal. Liquid Crystals, 2018, 45, 370-380.	0.9	34
22	Biasâ€Polarity Dependent Bidirectional Modulation of Photonic Bandgap in a Nanoengineered 3D Blue Phase Polymer Scaffold for Tunable Laser Application. Advanced Optical Materials, 2018, 6, 1800409.	3.6	34
23	Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120432.	2.0	33
24	Fabrication and photonic applications of large-domain blue phase films. Journal of Materials Chemistry C, 2019, 7, 9460-9466.	2.7	32
25	Broadband reflection in polymer stabilized cholesteric liquid crystal films with stepwise photo-polymerization. Physical Chemistry Chemical Physics, 2017, 19, 2353-2358.	1.3	31
26	Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups. New Journal of Chemistry, 2019, 43, 617-621.	1.4	31
27	Engineering of Organic Chromophores with Large Second-Order Optical Nonlinearity and Superior Crystal Growth Ability. Crystal Growth and Design, 2015, 15, 5560-5567.	1.4	30
28	Preparation and optical properties of Fe ₃ O ₄ nanoparticles-doped blue phase liquid crystal. Physical Chemistry Chemical Physics, 2016, 18, 29028-29032.	1.3	30
29	Polymer dispersed liquid crystals doped with CeO ₂ nanoparticles for the smart window. Liquid Crystals, 2022, 49, 29-38.	0.9	30
30	Broadband reflection characteristic of polymer-stabilised cholesteric liquid crystal with pitch gradient induced by a hydrogen bond. Liquid Crystals, 2010, 37, 1275-1280.	0.9	29
31	Click chemistry functionalization improving the wideband optical-limiting performance of fullerene derivatives. Physical Chemistry Chemical Physics, 2016, 18, 7341-7348.	1.3	28
32	The application of double click to synthesize a third-order nonlinear polymer containing donor–acceptor chromophores. Polymer Chemistry, 2016, 7, 3714-3721.	1.9	27
33	Synthesis and self-assembly behaviours of side-chain smectic thiol–ene polymers based on the polysiloxane backbone. Journal of Materials Chemistry C, 2016, 4, 1425-1440.	2.7	27
34	Liquid crystalline blue phase materials with three-dimensional nanostructures. Journal of Materials Chemistry C, 2019, 7, 13352-13366.	2.7	26
35	Blue phase liquid crystals affected by graphene oxide modified with aminoazobenzol group. Liquid Crystals, 2016, 43, 573-580.	0.9	25
36	Self-Assembled Porphyrin-Based Nanoparticles with Enhanced Near-Infrared Absorbance for Fluorescence Imaging and Cancer Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 999-1005.	2.3	23

#	Article	IF	CITATIONS
37	Study on the electro-optical properties of polyimide-based polymer-dispersed liquid crystal films. Liquid Crystals, 2015, 42, 1689-1697.	0.9	22
38	Flexible H-bonded liquid-crystals with wide enantiotropic blue phases. Physical Chemistry Chemical Physics, 2014, 16, 5622.	1.3	21
39	Nonlinear optical properties of the novel kind of organic donor-acceptor thiophene derivatives with click chemistry modification. Tetrahedron, 2017, 73, 6210-6216.	1.0	21
40	Printable photonic polymer coating based on a monodomain blue phase liquid crystal network. Journal of Materials Chemistry C, 2019, 7, 13764-13769.	2.7	21
41	Pyrene-Based Small Molecular Nonlinear Optical Materials Modified by â€~â€~Click-Reaction''. Journal of Electronic Materials, 2015, 44, 2883-2889.	1.0	20
42	Liquid Crystalline Elastomers Based on Click Chemistry. ACS Applied Materials & Interfaces, 2022, 14, 14842-14858.	4.0	20
43	Effect of Monomer Composition on the Performance of Polymer‣tabilized Liquid Crystals with Two‣tep Photopolymerization. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1126-1132.	2.4	19
44	Bandwidth-controllable reflective cholesteric gels from photo- and thermally-induced processes. Liquid Crystals, 2010, 37, 311-316.	0.9	18
45	Effects of thiophene-based mesogen terminated with branched alkoxy group on the temperature range and electro-optical performances of liquid crystalline blue phases. Liquid Crystals, 2016, 43, 524-534.	0.9	18
46	Broadband reflection mechanism of polymer stabilised cholesteric liquid crystal (PSChLC) with pitch gradient. Liquid Crystals, 2011, 38, 673-677.	0.9	17
47	Broadband reflective liquid crystal films induced by facile temperature-dependent coexistence of chiral nematic and TGB phase. Liquid Crystals, 2017, 44, 582-592.	0.9	17
48	Reversible solvent-sensitive actuator with continuous bending/debending process from liquid crystal elastomer-colloidal material. Soft Matter, 2018, 14, 5547-5553.	1.2	17
49	Liquid crystalline and thermo-optical properties of cyclic siloxane tetramers containing cholestryl-4-allyloxy-benzoate and biphenyl-4-yl 4-allyloxybenzoate. Liquid Crystals, 2011, 38, 9-15.	0.9	16
50	Application of Nearâ€IR Absorption Porphyrin Dyes Derived from Click Chemistry as Thirdâ€Order Nonlinear Optical Materials. ChemistryOpen, 2016, 5, 71-77.	0.9	16
51	Facile synthesis of functional poly(vinylene sulfide)s containing donor–acceptor chromophores by a double click reaction. RSC Advances, 2016, 6, 59327-59332.	1.7	16
52	Broadband reflection in polymer-stabilized cholesteric liquid crystal film with zinc oxide nanoparticles film thermal diffusion method. Liquid Crystals, 2021, 48, 1959-1968.	0.9	16
53	Nonlinear Optical Properties of Porphyrin Derivatives with Electronâ€donating or Electronâ€withdrawing Substituents. Chinese Journal of Chemistry, 2016, 34, 381-386.	2.6	15
54	Reflective Band Memory Effect of Cholesteric Polymer Networks Based on Washout/Refilling Method. Macromolecular Chemistry and Physics, 2020, 221, 1900572.	1.1	15

#	Article	IF	CITATIONS
55	Influence of ZnO NPs on morphological and electro-optical properties of polymer-dispersed liquid crystals, 2021, 48, 1699-1708.	0.9	14
56	Preparation of cholesteric polymer networks with broadband reflection memory effect. Liquid Crystals, 2022, 49, 153-161.	0.9	14
57	Research Progress of Cholesteric Liquid Crystals with Broadband Reflection. Molecules, 2022, 27, 4427.	1.7	14
58	Synthesis and mesophase behaviour of branched azobenzene-based supramolecular hydrogen-bonded liquid crystals. Liquid Crystals, 2017, 44, 593-602.	0.9	13
59	The effects of azo-oxadiazole-based bent-shaped molecules on the temperature range and the light-responsive performance of blue phase liquid crystal. Liquid Crystals, 2019, 46, 1024-1034.	0.9	13
60	3D nanomaterial silica aerogel via diffusion of chiral compound driven broadband reflection in chiral nematic liquid crystals. Liquid Crystals, 2019, 46, 952-962.	0.9	13
61	Double UV polymerisation with variable temperature-controllable selective reflection of polymer-stabilised liquid crystal (PSLC) composites. Liquid Crystals, 2016, 43, 1299-1306.	0.9	12
62	Large-sized benzo[<i>e</i>]indolium salt single crystals with high optical nonlinearity. CrystEngComm, 2019, 21, 5626-5632.	1.3	12
63	Schiff base derivative doped chiral nematic liquid crystals with a large wavelength shift driven by temperature and light. Journal of Materials Chemistry C, 2020, 8, 561-566.	2.7	12
64	Silica aerogel films via ambient pressure drying for broadband reflectors. New Journal of Chemistry, 2018, 42, 6525-6531.	1.4	11
65	TiO2 nanorod arrays induced broad-band reflection in chiral nematic liquid crystals with photo-polymerization network. Liquid Crystals, 2019, 46, 210-218.	0.9	11
66	Third-order nonlinear optical properties of the "clicked―closed-ring spiropyrans. Dyes and Pigments, 2019, 162, 451-458.	2.0	11
67	The relationship between crosslinker, liquid crystal, and magnetic nanomaterial doping on electro-optical properties of PDLC. Liquid Crystals, 2021, 48, 2016-2026.	0.9	11
68	Synthesis and co-assembly of gold nanoparticles functionalized by a pyrene–thiol derivative. RSC Advances, 2015, 5, 140-145.	1.7	10
69	Effect of bent-shape and calamitic-shape of hydrogen-bonded mesogens on the liquid crystalline properties. Liquid Crystals, 2015, 42, 1191-1200.	0.9	10
70	Third-order nonlinear optical properties of a novel series of azobenzene liquid crystal derivatives. Molecular Crystals and Liquid Crystals, 2016, 630, 1-5.	0.4	10
71	Energy-level tuning of poly(p-phenylenebutadiynylene) derivatives by click chemistry-type postfunctionalization of side-chain alkynes. Reactive and Functional Polymers, 2016, 105, 114-121.	2.0	10
72	Nanoparticle-doped chiral nematic liquid-crystal composite and its effect in magnetic-response and electric-response flexible display. Liquid Crystals, 2019, 46, 249-256.	0.9	9

#	Article	IF	CITATIONS
73	Super wide-band reflective polarisers from polymer stabilised liquid crystal films. Liquid Crystals, 2009, 36, 497-501.	0.9	8
74	Synthesis and Characterization of New Benzo[e]Indol Salts for Second-Order Nonlinear Optics. Crystals, 2020, 10, 242.	1.0	8
75	Double-click synthesis of polysiloxane third-order nonlinear optical polymers with donor–acceptor chromophores. Polymer Chemistry, 2020, 11, 3046-3053.	1.9	8
76	Studies on electro-optical properties of polymer dispersed liquid crystals doped with reticular nanofiber films prepared by electrospinning. Liquid Crystals, 2021, 48, 1850-1858.	0.9	8
77	Study on electro-optical and adhesion properties of polymer dispersed liquid crystal films from thiol-ene click reaction. Liquid Crystals, 2021, 48, 2188-2199.	0.9	8
78	Synthesis and optical behaviour of hydrogen-bonded liquid crystals based on a chiral pyridine derivative. Liquid Crystals, 2011, 38, 1217-1225.	0.9	7
79	Effects of donor and acceptor on optoelectronic performance for porphyrin derivatives: Nonlinear optical properties and dye-sensitized solar cells. Chemical Research in Chinese Universities, 2015, 31, 992-996.	1.3	6
80	Chiral hydrogen-bonded complex with different mesogens length and its effect on the performances of blue phase. Optical Materials Express, 2016, 6, 868.	1.6	6
81	The temperature range and optical properties of the liquid crystalline blue phase in inverse opal structures. Journal of Materials Chemistry C, 2018, 6, 11071-11077.	2.7	6
82	Thermally bandwidth-controllable reflective liquid crystal films prepared by doping nano-sized electrospun fibers. Liquid Crystals, 2021, 48, 1525-1533.	0.9	6
83	Preparation and properties of water-responsive films with color controllable based on liquid crystal and poly(ethylene glycol) interpenetrating polymer network. Liquid Crystals, 2022, 49, 1411-1419.	0.9	6
84	Broadband Reflective Liquid Crystal Films Prepared by Rapid Inkjet Printing and Superposition Polymerization. Crystals, 2022, 12, 473.	1.0	6
85	Epoxy Vitrimer Based on Temperatureâ€Responsive Pure Organic Room Temperature Phosphorescent Materials. ChemistrySelect, 2022, 7, .	0.7	6
86	Quantification of uric acid concentration in tears by using PDMS inverse opal structure surface-enhanced Raman scattering substrates: Application in hyperuricemia. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121326.	2.0	6
87	The effects of asymmetric bent-shaped compounds on the temperature range and electro-optical performances of liquid crystalline blue phases. RSC Advances, 2016, 6, 110750-110757.	1.7	5
88	Self-diffusion method for broadband reflection in polymer-stabilized cholesteric liquid crystal films. Liquid Crystals, 2022, 49, 494-503.	0.9	5
89	Vitrimer enhanced carbazole-based organic room-temperature phosphorescent materials. New Journal of Chemistry, 2021, 46, 276-281.	1.4	5
90	Effect of the dimeric H-bonded mesogens of chiral acids on the mesogenic and optical properties. Liquid Crystals, 2016, 43, 874-885.	0.9	4

#	Article	IF	CITATIONS
91	Preparation of Liquid Crystal Film Capable of Shielding Visible Light Band by Twoâ€Phase Coexistence. Journal of Polymer Science, 2020, 58, 599-606.	2.0	4
92	Doping white carbon black particles to adjust the electro-opticical properties of PDLC. Liquid Crystals, 2021, 48, 2130-2139.	0.9	3
93	Role of Fluorescent Material on Electro-optical Performance of PDLC Devices. Liquid Crystals, 2022, 49, 647-656.	0.9	2
94	Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging. RSC Advances, 2022, 12, 3380-3385.	1.7	2
95	Mesophase properties of fluorene-core mesogens and their effects on blue phase liquid crystals. Liquid Crystals, 2022, 49, 679-689.	0.9	2
96	Cholesteric liquid crystal films with adjustable wavelength band and reflectance by using wash-out/refill technique and light-responsive compounds. Liquid Crystals, 2022, 49, 1763-1773.	0.9	2
97	Broadband reflection cholesteric liquid crystal film fabricated by near-infrared photothermal response technology. Liquid Crystals, 0, , 1-11.	0.9	1
98	Broadband reflection prepared by loading chiral dopants in white carbon black. Liquid Crystals, 0, , 1-9.	0.9	1
99	Highly Efficient Spinâ€Filtering Transport in Chiral Hybrid Copper Halides. Angewandte Chemie, 2021, 133, 23770.	1.6	1
100	Low voltage tunable cholesteric liquid crystal based on electrochemical process. Liquid Crystals, 0, , 1-11.	0.9	0